Skip to main content
Log in

Diffusion-weighted imaging of the spine using radialk-space trajectories

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

Diffusion-weighted MR imaging (DWI) of the spine requires robust imaging methods, that are insensitive to susceptibility effects caused by the transition from bone to soft tissue and motion artifacts due to breathing, swallowing, and cardiac motion. The purpose of this study was to develop a robust imaging method suitable for DWI of the spine.

Methods and subjects

A radialk-space spin echo sequence has been implemented, which is sell-navigating because each acquisition line passes through the origin ofk-space. Influence of cardiac motion and associated flow of cerebrospinal fluid is minimized by cardiac gating with a finger photoplethysmograph. The sequence has been tested on a 1.5T system. Diffusion-weighted images of six normal volunteers were acquired in the sagittal plane with 4b values between 50 and 500 s mm−2. Because of the symmetries of the cord, diffusion measurements in the head-foot (HF) or left-right (LR) directions were sufficient to measure the dominant effects of anisotropy.

Results

The apparent diffusion coefficients (ADCs) measured, respectively, in the LR and HF directions were (0.699 ± 0.050) × 10−3 and (1.805 ± 0.086) × 10−3 mm2 s−1 in the spinal cord. (1.588 ± 0.082) × 10−3 and (1.528 ± 0.052) × 10−3 mm2 s−1 in the intervertebral disks, and (0.346 ± 0.047) × 10−3 and (0.306 ± 0.035) × 10−3 mm2 s−1 in the vertebrae of the cervicothoraeic spine.

Conclusion

Diffusion-weighted spin echo sequences with radial trajectories ink-space provide a means of achieving robust, high quality diffusion-weighted imaging and measuring ADCs in the spine. The application of the diffusion-weighting gradients in different directions allows diffusion anisotropy to be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moseley ME, Cohen Y, Mintprovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990;14:330–46.

    Article  PubMed  CAS  Google Scholar 

  2. Lövblad KO, Baird AE, Schlaug G, Benfield A, Siewert B, Voetsch B, Connor A. Burzynski C. Edelman RR, Warach S. Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol 1997;42:164–70.

    Article  PubMed  Google Scholar 

  3. Schellingcr PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999:30:765–8.

    Google Scholar 

  4. Weber J, Mattle HP. Heid O. Remonda L, Schroth G. Diffusion-weighted imaging in ischaemic stroke: a follow-up study. Neuroradiology 2000:42:184–91.

    Article  PubMed  CAS  Google Scholar 

  5. Lee LJ, Kidwell CS. Alger J, Starkman S, Saver JL. Impacton stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke 2000;31:1081–9.

    PubMed  CAS  Google Scholar 

  6. Kim YJ, Chang KH. Song IC Kim HD, Seong SO, Kim YH, Han MH. Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighied MR imaging. Am J Roentgenol 1998; 171:1487–90.

    CAS  Google Scholar 

  7. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y. Hirai T. Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y. Takahashi M. Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9:53–60.

    Article  PubMed  CAS  Google Scholar 

  8. Tievsky AL, Ptak T. Farkas J. Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. Am J Neuroradiol 1999;20:1491–9.

    PubMed  CAS  Google Scholar 

  9. Werring DJ. Clark CA, Barker GJ, Thompson AJ, Miller DH. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 1999:52:1626–32.

    PubMed  CAS  Google Scholar 

  10. Cercignani M. Iannucci G, Rocca MA. Comi G, Horsfield MA. Filippi M. Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 2000:54:1139–44.

    PubMed  CAS  Google Scholar 

  11. Douek P, Turner R. Pekar J. Patronas N, Le Bihan D. MR color mapping of myelin fiber orientation. J Comput Assist Tomogr 1991:15:923–9.

    Article  PubMed  CAS  Google Scholar 

  12. Pierpaoli C, Jezzard P. Basser PJ, Barnett A, Di-Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996:201:637–48.

    PubMed  CAS  Google Scholar 

  13. Jones DK, Lythgoe D. Horsfield MA, Simmons A. Williams SC, Markus HS. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke 1999;30:393–7.

    PubMed  CAS  Google Scholar 

  14. Shimony JS; McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE; Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 1999:212:770–84.

    PubMed  CAS  Google Scholar 

  15. Chun T, Ulug AM, van Zijl PC. Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med 1998;40:622–8.

    Article  PubMed  CAS  Google Scholar 

  16. Li TQ, Takahashi AM, Hindmarsh T, Moseley ME. ADC mapping by means of a single-shot spiral MRI technique with application in acute cerebral ischemia. Magn Reson Med 1999;41:143–7.

    Article  PubMed  CAS  Google Scholar 

  17. Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V. Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 1994; 12:455–60.

    Article  PubMed  CAS  Google Scholar 

  18. Anderson AW, Gore JC. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 1994;32:379–87.

    Article  PubMed  CAS  Google Scholar 

  19. Latta P, Jellus V, Budinsky L, Mlynarik V, Tkac I, Luypaert R. Motion artifacts reduction in DWI using navigator echoes: a robust and simple correction scheme. MAGMA 1998:7:21–7.

    Article  PubMed  CAS  Google Scholar 

  20. Dietrich O, Heiland S, Benner T, Sartor K. Reducing motion artefacts in diffusion-weighted MRI of the brain: efficacy of navigator echo correction and pulse triggering. Neuroradiology 2000:42:85–91.

    Article  PubMed  CAS  Google Scholar 

  21. Clark CA, Barker GJ, Tofts PS. Improved reduction of motion artifacts in diffusion imaging using navigator echoes and velocity compensation. J Magn Reson 2000:142:358–63.

    Article  PubMed  CAS  Google Scholar 

  22. Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med 1996:36:509–19.

    Article  PubMed  CAS  Google Scholar 

  23. Maier SE. Gudbjartsson H, Patz S. Hsu L. Lövblad KO, Edelman RR, Warach S, Jolesz FA. Line scan diffusion imaging: characterization in healthy subjects and stroke patients. Am J Roentgenol 1998:171:85–93.

    CAS  Google Scholar 

  24. Gmitro AF, Alexander AL. Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med 1993:29:835–8.

    Article  PubMed  CAS  Google Scholar 

  25. Trouard TP. Theilmann RJ, Altbach MI, Gmitro AF. High-resolution diffusion imaging with DIFRAD-FSE (diffusion-weighted radial acquisition of data with fast spin-echo) MRI. Magn Reson Med 1999:42:11–8.

    Article  PubMed  CAS  Google Scholar 

  26. Seifert MH, Jakob PM, Jellus V, Haase A. Hillenbrand C. High-resolution diffusion imaging using a radial turbo-spin-echo sequence: implementation, eddy current compensation, and self-navigation. J Magn Reson 2000:144:243–54.

    Article  PubMed  CAS  Google Scholar 

  27. Finsterbusch J. Frahm J. Diffusion-weighted single-shot line scan imaging of the human brain. Magn Reson Med 1999:42:772–8.

    Article  PubMed  CAS  Google Scholar 

  28. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999:42:963–9.

    Article  PubMed  CAS  Google Scholar 

  29. Turner R. Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990:177:407–14.

    PubMed  CAS  Google Scholar 

  30. Turner R. Le Bihan D, Chesnick AS. Echo-planar imaging of diffusion and perfusion. Magn Reson Med 1991:19:247–53.

    Article  PubMed  CAS  Google Scholar 

  31. Trouard TP. Sabharwal Y, Altbach MI, Gmitro AF. Analysis and comparison of motion-correction techniques in diffusion-weighted imaging. J Magn Reson Imaging 1996:6:925–35.

    Article  PubMed  CAS  Google Scholar 

  32. O’Sullivan JD. A fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans Med Imaging 1985:4:200–7.

    Article  PubMed  CAS  Google Scholar 

  33. Schomberg H, Timmer J. The gridding method for image recon-struction by Fourier transformation. IEEE Trans Med Imaging 1995:14:596–607.

    Article  PubMed  CAS  Google Scholar 

  34. Dannels WR. Xu Y, Liu, H. Rotating diffusion MR imaging reduced motion artifacts. United States Patent 1998:5,833,609.

    Google Scholar 

  35. Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 1997;15:771–84.

    Article  PubMed  CAS  Google Scholar 

  36. Clark CA, Barker GJ. Tofts PS. Magnetic resonance diffusion imaging of the human cervical spinal cord in vivo. Magn Reson Med 1999;41:1269–73.

    Article  PubMed  CAS  Google Scholar 

  37. Clark CA, Werring DJ, Miller DH. Diffusion imaging of the spinal cord in vivo: estimation of the principal diffusivities and application to multiple sclerosis. Magn Reson Med 2000;43:133–8.

    Article  PubMed  CAS  Google Scholar 

  38. Bammer R. Fazckas F, Augustin M, Simbrunner J, Strasser-Fuchs S. Seifert T, Stoll-berger R. Hartung HP. Diffusion-weighted MR imaging of the spinal cord. Am J Neuroradiol 2000;21:587–91.

    PubMed  CAS  Google Scholar 

  39. Kerttula LI, Jauhiainen JP, Tervonen O, Suramo IJ, Koivula A. Oikarinen JT. Apparent diffusion coefficient in thoracolumbar intervertebral discs of healthy young volunteers. J Magn Reson Imaging 2000;12:255–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, O., Herlihy, A., Danneis, W.R. et al. Diffusion-weighted imaging of the spine using radialk-space trajectories. MAGMA 12, 23–31 (2001). https://doi.org/10.1007/BF02678270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678270

Keywords

Navigation