Skip to main content

On the Cohen-Macaulay property of diagonal subalgebras of the Rees algebra


We consider the blowing up of ℙ /n−1 k along a closed subscheme defined by a homogeneous idealIA=k[X 1, …,X n ] generated by forms of degree ≤d, and its projective embeddings by the linear systems corresponding to (I e) c , forcde+1. The homogeneous coordinate rings of these embeddings arek[(I e) c ]. One wants to study the Cohen-Macaulay property of these rings. We will prove that if the Rees algebraR A (I) is Cohen-Macaulay, thenk[(I e) c ] are Cohen-Macaulay forc>>e>0, thus proving a conjecture stated by A. Conca, J. Herzog, N.V. Trung and G. Valla.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. Bruns and J. Herzog,Cohen Macaulay rings, Cambridge studies in advanced mathematics, 39, 1993.

  2. 2.

    A. Conca, J. Herzog, N.V. Trung and G. Valla,Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces, preprint (1995).

  3. 3.

    S.D. Cutkosky and J. Herzog,Cohen-Macaulay coordinate rings of blowup schemes, preprint (1996).

  4. 4.

    D. Eisenbud,Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Berlin, Heidelberg, New York: Springer 1994.

    Google Scholar 

  5. 5.

    S. Goto and K. Watanabe,On graded rings I, J. Math. Soc. Japan 30, 179–213 (1978).

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    S. Goto and K. Watanabe,On graded rings II, Tokyo J. Math. 1, 237–261 (1978).

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    M. Herrmann, E. Hyry and J. Ribbe,On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras, Manuscripta Math. 79, 343–377 (1993).

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    M. Herrmann, S. Ikeda and U. Orbanz,Equimultiplicity and blowing up, Berlin, Heidelberg, New York:Springer 1988.

    MATH  Google Scholar 

  9. 9.

    E. Hyry,The diagonal subring and the Cohen-Macaulay property of a multigraded ring, preprint (1996).

  10. 10.

    A. Gimigliano and A. Lorenzini,On the ideal of Veronesean surfaces, Can. J. Math. 45, 758–777 (1993).

    MATH  MathSciNet  Google Scholar 

  11. 11.

    A. Simis, N.V. Trung and G. Valla,The diagonal subalgebra of a blow-up algebra, J. reine angew. Math., To appear.

Download references

Author information



Additional information

Supported by a F.P.I. grant of Ministerio de Educación y Ciencia (Spain)

This article was processed by the author using the LATEX style filecljour1 from Springer-Verlag.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavila-Vidal, O. On the Cohen-Macaulay property of diagonal subalgebras of the Rees algebra. Manuscripta Math 95, 47–58 (1998).

Download citation


  • Exact Sequence
  • Local Ring
  • Polynomial Ring
  • Noetherian Ring
  • Closed Subscheme