Skip to main content
Log in

Energy release in corona magnetic loops

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

It is found that thin magnetic tubes of radius about 107-108 cm and longitudinal current 1011-1012 A can be generated under the conditions of convective flows in the solar photosphere. Moreover, the so-called “magnetic holes”, cylindrical magnetic structures with magnetic field decreasing towards the center, can be formed in divergent convective (Evershed) flows. It is shown that the steady-state Joule energy release (dissipation) at the photospheric footpoints of a magnetic tube increase towards the tube periphery in the upper photosphere and can exceed the optical radiation losses. In particular, this can lead to the occurrence of magnetic tubes with hot external envelopes.

We consider two models of magnetic flaring loops in the active region. One model describes the explosive energy release in an individual loop caused by the penetration of the dense partially ionized plasma of a prominence into the magnetic tube (in the upper part of the loop) due to flute instability or the penetration of the surrounding chromospheric plasma (in the chromospheric part of the loop). The inflow of these plasmas destroys the force-free structure of the magnetic tube and switches on an efficient mechanism of energy release due to ion-atom collisions in a non-steady-state plasma. We studied the dynamics of the joule energy release in such processes. The second model of flaring energy release is based on the global approach in the study of the dynamics and energetics of solar active regions with allowance for their complex self-consistent evolution. The structure of the magnetic field of an active region was represented as an ensemble of inductively coupled current-carrying magnetic loops interacting with each other. Each loop, in turn, was simulated by an equivalent electric circuit with variable parameters as a function of the shape, scale, and position of the loop in the ensemble as well as of the plasma temperature and density in the magnetic tube. Using this model, we showed that a rising magnetic loop can cause thermal flare-like heating of one loop and cooling of other loops in the ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Henoux, and B. V. Somov,Astron. Astrophys.,241, 613 (1991).

    ADS  Google Scholar 

  2. E. R. Priest,Solar Magnetohydrodynamics, Reidel, Dordrecht (1982).

    Google Scholar 

  3. H. Zirin,Vistas. Astron.,16, 1 (1974).

    Article  ADS  Google Scholar 

  4. E. N. Parker,Sol. Phys.,121, 431 (1989).

    Article  Google Scholar 

  5. L. Vlahos,Sol. Phys.,121, 453 (1989).

    Article  Google Scholar 

  6. D. B. Melrose, and J. I. Khan,Astron. Astrophys.,219, 308 (1989).

    ADS  Google Scholar 

  7. H. K. Sen, and M. L. White,Sol. Phys.,23, 146 (1972).

    Article  ADS  Google Scholar 

  8. D. F. Spicer,Sol. Phys.,53, 305 (1977).

    Article  ADS  Google Scholar 

  9. T. Gold,Mon. Not. R. Astron. Soc.,120, 89 (1960).

    ADS  Google Scholar 

  10. T. Tajima, F. Brunel, and J. Sakai,Astrophys. J.,258, L45 (1982).

    Article  ADS  Google Scholar 

  11. T. Tajima, J. Sakai, T. Nakajima, et al.,Astrophys. J.,321, 1031 (1987).

    Article  ADS  Google Scholar 

  12. J. Heyverts, E. R. Priest, and D. Rust,Astrophys. J.,216, 213 (1977).

    ADS  Google Scholar 

  13. P. A. Sturrock,Astrophys. J.,S73, 79 (1968).

    Google Scholar 

  14. H. Alfven, and D. Carlquist,Sol. Phys.,1, 220 (1967).

    Article  ADS  Google Scholar 

  15. V. V. Zaitsev, and A. V. Stepanov,Sol. Phys.,139, 343 (1992).

    Article  ADS  Google Scholar 

  16. J. R. Kan, S.-I. Akasofu, and L. C. Lee,Sol. Phys.,84, 153 (1983).

    Article  ADS  Google Scholar 

  17. D. B. Melrose, and A. N. McClymont,Sol. Phys.,113, 241 (1987).

    Article  ADS  Google Scholar 

  18. M. S. Wheatland, and D. B. Melrose,Sol. Phys.,159, 137 (1995).

    Article  ADS  Google Scholar 

  19. V. V. Zaitsev, S. Urpo, and A. V. Stepanov, in: Proc. URSI/IEEE/IRC XXI Convention on Radio Science, Otaniemi, Finland (1996), p. 46.

  20. M. L. Khodachenko,Astron. Zh.,73, No. 2, 303 (1996).

    Google Scholar 

  21. E. N. Parker,Astrophys. J.,264, 642 (1985).

    Article  ADS  Google Scholar 

  22. Z. M. Mikic, D. C. Barnes, and D. D. Schnack,Astrophys. J.,328, 830 (1988).

    Article  ADS  Google Scholar 

  23. A. A. van Ballegooijen,Astrophys J.,311, 1001 (1986).

    Article  ADS  Google Scholar 

  24. V. V. Zaitsev, O. G. Parfenov, and A. V. Stepanov,Sol. Phys.,60, 279 (1978).

    Article  ADS  Google Scholar 

  25. G. Peres, R. Rosner, S. Serio, and G. S. Vaiana,Astrophys. J.,252, 791 (1982).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 40, Nos. 1–2, pp. 176–212, January–February, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, V.V., Khodachenko, M.L. Energy release in corona magnetic loops. Radiophys Quantum Electron 40, 114–138 (1997). https://doi.org/10.1007/BF02677830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677830

Keywords

Navigation