Skip to main content
Log in

Electrodynamics of a convective cloud

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

An attempt has been made to describe analytically the electrodynamics of a convective cloud on the basis of a one-dimensional convective cell with solid gas rotation. The cloud electrification is due to the interaction between heavy (large raindrops and particles of hail) and light (microparticles of water and ice) particles. As a result, the particles acquire unlike electric charges. The large-scale electric field in the cloud is stipulated by boundary effects and influences considerably the motion of the heavy fraction of aerosol particles. A scenario is proposed for the development of an intracloud charge, by which the large-scale electric field does not reach the breakdown value, staying at the level of the corona discharge field, while an increase in the irregular component of the electric field is continued and achieves the breakdown value in the small-scale electric cells induced by analogues of plasma beam instabilities. The basic electric discharge occurs against the background of multiple discharges inside the cell which provide for the leader lightning channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Muchnik,Physics of the Thunderstorm [in Russian], Gidrometeoizdat, Leningrad (1974).

    Google Scholar 

  2. J. Chalmers,Atmospheric Electricity [Russian translatin], Gidrometeoizdat, Leningrad (1974).

    Google Scholar 

  3. I. M. Imyanitov, E. V. Chubarina, and Ya. I. Shvarts,Electricity of Clouds [in Russian], Gidrometeoizdat, Leningrad (1974).

    Google Scholar 

  4. P. A. Bespalov and Yu. V. Chugunov,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,40, 138 (1997).

    Google Scholar 

  5. K. V. berd and H. T. Och, in:Earth’s Electrical Environment (P. Krider and R. J. Roble, eds.), Nat. Acad. Press, Washington (1986), p. 114.

    Google Scholar 

  6. M. B. Baker and J. G. Dash,J. Cryst. Growth,97, 770 (1989).

    Article  ADS  Google Scholar 

  7. M. B. Baker, J. Latham, and K. Norville,J. Geophys. Res.,96, 7463 (1991).

    ADS  Google Scholar 

  8. Z. Levin and I. Tzur, in:Earth’s Electrical Environment (P. Krider and R. J. Roble, eds.), Nat. Acad. Press, Washington (1986), p. 131.

    Google Scholar 

  9. L. H. Ruhnke,J. Appl. Meteorol.,9, No. 6, 947 (1970).

    Article  ADS  Google Scholar 

  10. C.-S. Chiu and J. Klett,J. Geophys. Res.,81, No. 6, 1111 (1989).

    Article  ADS  Google Scholar 

  11. F. R. S. Mason Jr.,Proc. R. Soc., London,415, No. 1829, 303 (1988).

    ADS  Google Scholar 

  12. G. I. Burne, A. A. Few, M. F. Steward, A. C. Conrad, and R. L. Torczon,J. Geophys. Res.,92, 1017 (1987).

    ADS  Google Scholar 

  13. T. J. Schuur, B. F. Smull, et al.J. Atomos. Sci.,48, 825 (1991).

    Article  ADS  Google Scholar 

  14. E. P. Krider,J. Geophys. Res.,94, 13145 (1989).

    ADS  Google Scholar 

  15. E. P. Krider, M. C. Murphy, et al., in: Proc. 10th Int. Conf. Atmospheric Electricity, Osaka (1996), p. 124.

  16. T. C. marshall and W. D. Rust,Bull. Am. Meteorol. Soc.,74, 2159 (1993).

    Article  ADS  Google Scholar 

  17. D. Breed, J. Dye, J. J. Jones, and G. Barnes, in: Proc. ICAE-92, St. Petersburg, Russia, issue 3, 706 (1992).

  18. B. Gardniner, R. L. Lamb, et al.,J. Geophys. Res.,90, 6079 (1985).

    ADS  Google Scholar 

  19. V. Yu. Trakhtengerts,Dokl. Akad. Nauk SSSR,308, 584 (1989).

    Google Scholar 

  20. V. Yu. Trakhtengerts,J. Atm. Terr. Phys., 217 (1992).

  21. Yu. P. Raizer,Physics of a Gas Discharge [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  22. C. T. Phelps,J. Geophys. Res.,76, 5799 (1971).

    Article  ADS  Google Scholar 

  23. M. Davis,Quart. J. Mech. Appl. Math.,17, 499 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  24. E. A. Mareev, A. E. Sorokin, and V. Yu. Trakhtengerts,Zh. Eksp. Teor. Fiz. [in press].

  25. S. V. Polyakov, V. O. Rapoport, and V. Yu. Trakhtengerts,Int. J. Remote Sensing,15, 173 (1994).

    Article  ADS  Google Scholar 

  26. M. Uman,Lightning [Russian translation], Mir, Moscow (1972).

    Google Scholar 

Download references

Authors

Additional information

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 40, Nos. 1–2, pp. 123–137, January–February, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trakhtengertz, V.Y., Mareev, E.A. & Sorokin, A.E. Electrodynamics of a convective cloud. Radiophys Quantum Electron 40, 77–86 (1997). https://doi.org/10.1007/BF02677826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677826

Keywords

Navigation