Skip to main content
Log in

Theory of second-order cyclotron resonance as related to the origin of discrete VLF emissions in the magnetosphere

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

Recent analytical and numerical results concerning the role of the second-order cyclotron resonance effects in formation of discrete emissions in the magnetosphere are reviewed. Peculiarities of whistler cyclotron interactions with energetic particles having sharp (step-like or beam-like) distribution functions evolving in space and time are studied. Formation of such distributions is considered, and an analytical self-consistent theory of the second-order cyclotron resonance effects is developed. In particular, characteristics of electron beams produced by the interaction of a VLF wave packet from a ground-based transmitter are studied. It is shown that spatial and temporal gradients of the parallel velocity of the beams formed can be opposite to the case of a pure adiabatic motion of a single particle. Such a behavior can be significant for the generation of secondary emissions. It is proven that the optimal conditions for the instability occur for a nonstationary quasi-monochromatic wavelets whose frequency changes in time. The theory developed permits one to estimate the wave amplification and spatio-temporal characteristics of these wavelets. Numerical results on beam formation and generation of secondary emissions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Helliwell,Whistlers and Related Ionospheric Phenomena, Palo Alto (Calif.): Stanford Univ. Press (1965).

    Google Scholar 

  2. Y. Omura, D. Nunn, Matsumoto H. Matsumoto, and M. J. Rycroft.J. Atmos. Terr. Phys.,53, No. 5, 351 (1991).

    Article  ADS  Google Scholar 

  3. P. A. Bespalov and V. Yu. Trakhtengerts, in:Reviews of Plasma Physics, edited by M. A. Leontovich, Vol. 10, Plenum, New York (1986), p. 155.

    Google Scholar 

  4. V. Yu. Trakhtengerts, M. J. Rycroft, and A. G. Demekhov,J. Geophys. Res.,101 (A6), 13293 (1996).

    Article  ADS  Google Scholar 

  5. R. A. Helliwell,J. Geophys. Res.,72, 4773 (1967).

    ADS  Google Scholar 

  6. D. Nunn,Planet. Space Sci.,22, 349 (1974).

    Article  ADS  Google Scholar 

  7. D. Nunn,J. Plasma Phys.,11, 189 (1974).

    Article  ADS  Google Scholar 

  8. D. Nunn,Planet. Space Sci.,34 (5), 429 (1986).

    Article  ADS  Google Scholar 

  9. V. I. Karpman, Ya. N. Istomin, and D. R. Shklyar,Plasma Phys.,16, No. 8, 685 (1974).

    Article  ADS  Google Scholar 

  10. Ya. N. Istomin, V. I. Karpman, and D. R. Shklyar,Geomagn. Aeron.,16, No. 1, 116 (1976).

    ADS  Google Scholar 

  11. A. Roux and R. Pellat,J. Geophys. Res.,83, 1433 (1978).

    Article  ADS  Google Scholar 

  12. H. Matsumoto, in:Wave Instabilities in Space Plasmas, D. Reidel, Dordrecht (1979), p. 163.

    Google Scholar 

  13. Y. Omura and H. Matsumoto,J. Geophys. Res., 4435 (1982).

  14. Y. Omura and H. Matsumoto, in:Proceedings of ISAP (1985), p. 995.

  15. Ya. N. Istomin,Geomagn. Aeron.,17, 359 (1977).

    ADS  MathSciNet  Google Scholar 

  16. J. L. Vomvoridis, T. L. Crystal, and J. Denavit,J. Geophys. Res.,87 (A3), 1473 (1982).

    ADS  Google Scholar 

  17. K. Molvig, G. Hilfer, R. H. Miller, and J. Myczkowski,J. Geophys. Res.,93 (A6), 5665 (1988).

    ADS  Google Scholar 

  18. A. J. Smith and D. Nunn,J. Geophys. Res.,103 (A4), 6771 (1998).

    Article  ADS  Google Scholar 

  19. D. Nunn, J. Manninen, T. Turunen, V. Yu. Trakhtengerts, and N. S. Erokhin,Ann. Geophys.,17, No. 1, p. 79 (1999).

    Article  ADS  Google Scholar 

  20. V. Yu. Trakhtengerts, Y. Hobara, A. G. Demekhov, and M. Hayakawa,Physics of Plasmas,6 (3), 692 (1999).

    Article  ADS  Google Scholar 

  21. V. Yu. Trakhtengerts, Y. Hobara, A. G. Demekhov, and M. Hayakawa,Adv. Space Res. (1999) (submitted).

  22. Y. Hobara, V. Yu. Trakhtengerts, A. G. Demekhov, and Hayakawa M. “Formation of electron beams in the interaction of a whistler wave packet with radiation belt electrons”,J. Atmos. Solar-Terr. Phys. (1999) (submitted).

  23. V. Yu. Trakhtengerts,J. Geophys. Res.,100 (9), 17205 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 8, pp. 713–727, August 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demekhov, A.G., Trakhtengerts, V.Y., Hobara, Y. et al. Theory of second-order cyclotron resonance as related to the origin of discrete VLF emissions in the magnetosphere. Radiophys Quantum Electron 42, 625–638 (1999). https://doi.org/10.1007/BF02676848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676848

Keywords

Navigation