Skip to main content
Log in

Electron acceleration and type II radio emission at quasi-parallel shock waves

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

Solar type II radio bursts are interpreted as the radio signature of shock waves travelling through the solar corona. Some of these shock waves are able to enter into the interplanetary medium and are observed as interplanetary type II bursts. The nonthermal radio emission of these bursts indicates that electrons are accelerated up to superthermal and/or relativistic velocities at the corresponding shocks. Plasma wave measurements at interplanetary shock waves support the assumption that the fundamental type II radio emission is generated by wave-wave interactions of electron plasma waves and ion acoustic waves and that the source region is located near the transition region of the shock. Therefore, the instantaneous bandwidth of type II bursts should reflect the density jump across the shock. Comparing the theoretically predicted density jump of coronal shock waves (Rankine-Hugoniot relations) and the measured instantaneous bandwidth of solar type II radio bursts it is appropriate to assume that these bursts are generated by weak supercritical quasi-parallel shock waves. Two different mechanisms for the accelaration of electrons at this kind of shock waves are investigated in the form of test particle calculations in given magnetic and electric fields. These fields have been extracted from in-situ measurements at the quasi-parallel region at Earth’s bow shock, which showed large amplitude magnetic field fluctuations (so-called SLAMS: Short Large Amplitude Magnetic Field Structures) as constituent parts. The first mechanism treats these structures as strong magnetic mirrors, at which charged particles are reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two approaching SLAMS. The second mechanism shows that it is possible to accelerate electrons inside a single SLAMS due to a noncoplanar component of the magnetic field in these structures. Both mechanism are described in the form of test particle calculations, which are supplemented by calculations according to adiabatic theory. The results are discussed for circumstances in the solar corona and in interplanetary space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Parker,Astroph. J.,133, 1014 (1961).

    Article  ADS  Google Scholar 

  2. Y. Uchida,Publ. Astron. Soc. Japan,12, 376 (1960).

    ADS  Google Scholar 

  3. A. Boischot, A. C. Riddle, J. B. Pearce, and J. W. Warwick,Sol. Phys.,65, 397 (1980).

    Article  ADS  Google Scholar 

  4. V. L. Ginzburg and V. V. Zheleznyakov,Astron. Zh.,35, 694 (1958); (Sov. Astron.,2, 653 (1958)).

    ADS  Google Scholar 

  5. A. Krüger,Introduction to Solar Radioastronomy and Radio Physics, Reidel, Dordrecht (1979).

    Google Scholar 

  6. D. B. Melrose,Sp. Sci. Rev.,26, 3 (1980).

    Article  ADS  Google Scholar 

  7. G. A. Newkirk,Astroph. J.,133, 983 (1961).

    Article  ADS  Google Scholar 

  8. V. V. Zaitsev, E. Ya. Zlotnik, G. Mann, H. Aurass, and A. Klassen,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,41, 164 (1998).

    Google Scholar 

  9. H. V. Cane, R. G. Stone, J. Fainberg, R. T. Stewart, J. L. Steinberg, and S. Hoang,Geophys. Res. Lett.,8, 1285 (1981).

    Article  ADS  Google Scholar 

  10. Bothmer V. Private communication (1997).

  11. G. Mann, H.-T. Claßen, and H. Aurass,Astron. Astrophys.,295, 775 (1995).

    ADS  Google Scholar 

  12. E. Priest,Solar Magnetohydrodynamics, Reidel, Dordrecht (1982).

    Google Scholar 

  13. A. R. Kantrowitz and H. E. Petschek, “MHD characteristics and shock waves,” in:Plasma Physics in Theory and Application (W. B. Kunkel, ed.), McGraw-Hill, New York (1966).

    Google Scholar 

  14. J. P. Edmiston and C. F. Kennel,J. Plasma Phys.,32, 411 (1984).

    Article  Google Scholar 

  15. M. M. Mellot, in:Collisionless Shocks in the Heliosphere: Reviews of Current Research (B. T. Tsurutaniand and R. G. Stone, eds.), Washington, DC: AGU GN-35, 131 (1985).

  16. J. T. Gosling, M. F. Thomsen, S. J. Bame, W. C. Feldmann, G. Paschmann, and N. Sckopke,Geophys. Res. Lett.,9, 1333 (1982).

    Article  ADS  Google Scholar 

  17. S. J. Schwartz, M. F. Thomson, and J. T. Gosling,J. Geophys. Res.,88, 2039 (1983).

    Article  ADS  Google Scholar 

  18. E. W. Greenstadt, in:Collisionless Shocks in the Heliosphere Reviews of Current Research (B. T. Tsurutani and R. G. Stone, eds.), Washington DC: AGU GN-35, 169 (1985).

  19. D. A. Gurnett, F. M. Neubauer, and R. Schwenn,J. Geophys. Res.,84, 541 (1979).

    Article  ADS  Google Scholar 

  20. D. Lengyel-Frey, G. Thejappa, R. J. MacDowall, R. G. Stone, and J. L. Phillips,J. Geophys. Res.,102, 2611 (1997).

    Article  ADS  Google Scholar 

  21. G. D. Holman and M. E. Pesses,Astrophys. J.,267, 837 (1983).

    Article  ADS  Google Scholar 

  22. A. O. Benz and G. Thejappa,Astron. Astrophys.,202, 267 (1988).

    ADS  Google Scholar 

  23. M. M. Leroy and A. Mangeney,Ann. Geophys.,2(4), 449 (1984).

    ADS  Google Scholar 

  24. C. S. Wu,J. Geophys. Res.,89, 8857 (1984).

    Article  ADS  Google Scholar 

  25. D. Lengyel-Frey D. and R. G. Stone,J. Geophys. Res.,94, 159 (1989).

    Article  ADS  Google Scholar 

  26. G. Paschmann, N. Sckopke, S. J. Bame, J. R. Asbridge, J. T. Gosling, C. T. Russell, and E. W. Greenstadt,Geophys. Res. Lett.,6, 209 (1979).

    Article  ADS  Google Scholar 

  27. M. M. Hoppe, C. T. Russell, L. A. Frank, T. E. Eastman, E. W. Greenstadt,J. Geophys. Res.,86, 4471 (1981).

    Article  ADS  Google Scholar 

  28. E. W. Greenstadt, J. M. Green, G. T. Inouye, D. S. Colburn, J. H. Binseck, and E. P. Lyon,Cosmic Electrodyn.,1, 160 (1970).

    Google Scholar 

  29. S. J. Schwartz, R. L. Kessel, C. C. Brinca, L. J. C. Wolliscroft, M. W. Dunlop, C. J. Farrugia, and D. S. Hall,J. Geophys. Res.,93, 11295 (1988).

    Article  ADS  Google Scholar 

  30. M. F. Thomsen, J. T. Gosling, S. J. Bame, and C. T. Russel,J. Geophys. Res.,95, 957 (1990).

    Article  ADS  Google Scholar 

  31. S. J. Schwartz, D. Burgess, W. P. Wilkinson, R. L. Kessel, M. Dunlop, and H. Lühr,J. Geophys. Res.,97, 4209 (1992).

    Article  ADS  Google Scholar 

  32. M. Scholer, in:Plasmaphysik im Sonnensystem (K.-H. Glassmeier and M. Scholer, eds.), BI Wissenschaftsverlag, Mannheim (1991), p. 77.

    Google Scholar 

  33. S. J. Schwartz and D. Burgess,Geophys. Res. Lett.,18, 373 (1991).

    Article  ADS  Google Scholar 

  34. G. Mann, H. Lühr, and W. Baumjohann,J. Geophys. Res.,99, 13315 (1994).

    Article  ADS  Google Scholar 

  35. L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik. Band VIII, Elektrodynamik der Kontinua, Akademie-Verlag, Berlin (1985).

    Google Scholar 

  36. M. Scholer, M. Fujimoto, and H. Kucharek, ESA SP-346 (1992), 59.

  37. C. F. Kennel, J. P. Edmiston, and H. Hada, in:Collisionless Shocks in the Heliosphere: A Tutorial Review (R. G. Stone and B. T. Tsurutani, eds.), Washington DC: AGU GN-34, 1 (1985).

  38. F. Malare and J. Elaoufir,J. Geophys. Res.,96, 7641 (1991).

    Article  ADS  Google Scholar 

  39. G. Mann,J. Plasma. Phys.,53, 109 (1995).

    Article  ADS  Google Scholar 

  40. E. Fermi,Astrophys. J.,119, 1 (1954).

    Article  ADS  Google Scholar 

  41. E. N. Parker,Phys. Rev.,109, 1328 (1958).

    Article  ADS  Google Scholar 

  42. J. R. Jokipii,Astrophys. J.,143, 961 (1966).

    Article  ADS  Google Scholar 

  43. D. J. McLean, K. V. Sheridan, R. T. Stewart, and J. P. Wild,Nature, No. 234, 140 (1971).

    Article  ADS  Google Scholar 

  44. G. Gisler and D. Lemons,J. Geophys. Res.,95, 14925 (1990).

    Article  ADS  Google Scholar 

  45. G. Mann and H.-T. Claßen,Astron. Astrophys.,304, 576 (1995).

    ADS  Google Scholar 

  46. T. G. Northrop,The Adiabatic Motion of Charged Particles, Wiley Interscience, New York (1963).

    MATH  Google Scholar 

  47. N. A. Krall and A. W. Trivelpiece,Principles of Plasma Physics, McGraw-Hill, New York (1986).

    Google Scholar 

  48. H.-T. Claßen and G. Mann,Astron. Astrophys.,322, 696 (1997).

    ADS  Google Scholar 

  49. M. Scholer,J. Geophys. Res.,98, 47 (1993).

    Article  ADS  Google Scholar 

  50. H. Kucharek and M. Scholer,J. Geophys. Res.,96, 21195 (1991).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Astrophysikalisches Institut, Observatorium für solare Radioastronomie, Potsdam, Germany. Published from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 1, pp. 84–104, January, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claßen, H.T., Mann, G. Electron acceleration and type II radio emission at quasi-parallel shock waves. Radiophys Quantum Electron 41, 53–67 (1998). https://doi.org/10.1007/BF02676712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676712

Keywords

Navigation