Advertisement

Radiophysics and Quantum Electronics

, Volume 41, Issue 6, pp 511–517 | Cite as

The Franz-Keldysh effect in superlattices in the field of a nonlinear electromagnetic wave

  • S. V. Kryuchkov
  • K. A. Popov
Article
  • 25 Downloads

Abstract

We study the effect of interminiband breakdown in a semiconductor quantum superlattice in a constant electric field and in the field of a nonlinear wave whose intensities are directed along the superlattice axis. The problem has been solved in the quasiclassical approximation for an arbitrary ratio between the widths of the allowed and forbidden minibands. In particular cases, we have obtained formulas for the breakdown probability in the presence of only one field, as well as for a linear wave and a solitary wave (soliton). It is shown that the probability of interminiband breakdown increases with the nonlinearity parameter of the electromagnetic wave k. The absorption coefficient of the nonlinear wave is calculated for typical parameters of the superlattice.

Keywords

Soliton Solitary Wave Nonlinear Wave Constant Field Constant Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Solimar and D. Walsh,Lectures in Electric Properties of Materials [Russian translation], Mir, Moscow (1991).Google Scholar
  2. 2.
    T. K. Woodward, Sizer Teodor (II), D. L. Sivco, and A. Y. Cho,Appl. Phys. Lett.,57, No. 6, 548 (1990).CrossRefADSGoogle Scholar
  3. 3.
    Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, et al.,Opt. Lett.,9, 507 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, et al.,Appl. Phys. Lett.,45, No. 1, 13 (1984).CrossRefADSGoogle Scholar
  5. 5.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, et al.,IEEE J. Quant. Electron.,QE-21, 1462 (1985).CrossRefADSGoogle Scholar
  6. 6.
    K. Fujiwara, H. Shneider, R. Cingolani, and K. Ploog,Solid State Commun.,72, No. 9, 935 (1989).CrossRefADSGoogle Scholar
  7. 7.
    S. Niki, A. L. Kellner, S. C. Lin, et al.,Appl. Phys. Lett.,56, No. 5, 475 (1990).CrossRefADSGoogle Scholar
  8. 8.
    S. V. Kryuchkov and G. A. Syrodoev,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,23, No. 6, 762 (1990).Google Scholar
  9. 9.
    B. S. Monzon and A. G. Zhilich,Fiz. Tverd. Tela,37, No. 4, 936 (1995).Google Scholar
  10. 10.
    Shi Jun-jie, Dai Xian-qi, and Pan Shao-hua,Acta Phys. Sin. Overseas Ed.,3, No. 6, 413 (1994).Google Scholar
  11. 11.
    E. Dupont, P. Corcum, H. C. Liu, P. H. Wilson, et al.,Appl. Phys. Lett.,65, No. 12, 1560 (1994).CrossRefADSGoogle Scholar
  12. 12.
    A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov,Scattering, Reactions, and Decompositions in Non-relativistic Quantum Mechanics [in Russian], Nauka, Moscow (1971).Google Scholar
  13. 13.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov,High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow (1989).Google Scholar
  14. 14.
    B. I. Ivlev and V. I. Mel'nikov,Zh. Eksp. Teor. Fiz.,90, No. 6, 2208 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. V. Kryuchkov
  • K. A. Popov

There are no affiliations available

Personalised recommendations