Skip to main content
Log in

Physical principles and technological aspects of the production of gradient composites based on an oxygen-free ceramics

  • First International Seminar on Ceramic Composites with an Organized Macrostructure—Functional Gradient Materials—“LOM-98”
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

This article examines the technological aspects of producing a new generation of ceramic composites— functionally gradient materials. It is shown how a percolation model of the electrical conductivity of resistive systems that was modified by the authors can be used to predict the electrical and mechanical properties of composites with a high degree of accuracy. Gradient composites in conversion systems designed to convert an electrical energy into heat are used as an example to demonstrate the promise of the proposed method as a means of optimizing the processing regimes for the production of ceramic composites having the required level of electrical and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Franz and G. Schwier, “Starting materials for advanced ceramic—production and properties,”Ind. Miner.,4, 61–65 (1987).

    Google Scholar 

  2. “Markt fur Elektrokeramic in Europa,”Produktion, No. 39,4 (1996).

  3. S. Saito,Fine Ceramics, Elsevier, Tokyo (1988).

    Google Scholar 

  4. W. Pietrowski, “Ceramika z azotku krszemy,”Pr. INME,40 (1993).

  5. N. Cherradi, D. Delfosse, and V. Ilschner, “Materiaux a gradient: exploatation du concept et techniques de production par metallurgie des poudres,”Rev. Met.,93, No. 2, 185–196 (1996).

    CAS  Google Scholar 

  6. “Functionally gradient materials,”Atoms Jpn.,39, No. 9, 3–9 (1995).

  7. M. Esinari, “Trends in the design of gradient functional materials,”Kinzoku (Metals and Technology),67, No. 2, 5–16 (1997).

    Google Scholar 

  8. M. F. O'Day, L. C. Sentura, and E. Ngo, “Processing and crystallization of functionally gradient ceramic materials,”Proc. Soc. Photo-Opt. Instrum. Eng., No. 2189, 388–398 (1994).

    Google Scholar 

  9. T. Studt, “Challenges and opportunities in the new age of materials,”Res. Dev.,32, No. 11, 55–60 (1990).

    Google Scholar 

  10. “Novel techniques in ceramic processing,”Can. Ceram. Quart., No.4, 263–239 (1993).

  11. G. Cheng, Z. Weidou and J. Zhihao, “Current status and trends in the development of functional gradient materials,”Rare Metal Mater. and Eng.,24, No. 3, 18–25 (1995).

    Google Scholar 

  12. W. Petrowski (Ukraine),Pat. 94917644.0-2211 Europ., Keramisches Heizelement sowie Verfahren zur Herstellung eines solchen Heizelements, Publ. February 9, 1995.

  13. V. Ya. Petrovskii, “Use of conducting composites based on Si3N4 in broadband electric heaters. I. Production of the functional element,”Poroshk. Metall., Nos. 3–4, 52–62 (1998).

    Google Scholar 

  14. W. Pietrowski, “Fomowanie folii ceramicznych dla wykonania gradijentowego kompozytu zawierajacego O′-Sialon,”Pol. Biuletyn Ceramiczny, Ceramica, No. 16(54), 249–258 (1997).

    Google Scholar 

  15. W. Pietrowski and J. Raabe, “Kompozyty z dodatnim wspolczynnikom opomosci i stoichiometric zastosowanie jako prominnikow podczerwieni,”Pol. Biuletyn Ceramiczny, Ceramica, No. 16(54), 315–324 (1997).

    Google Scholar 

  16. V. Ya. Petrovskii, “Use of conducting composites based on Si3N4 in broadband electric heaters. II. Emissivity of all-ceramic infrared heaters based on silicon nitride,”Poroshk. Metall., Nos 5–6, 63–69 (1998).

    Google Scholar 

  17. V. Ya. Petrovskii, “Physical principles and technological aspects of the production of gradient composites based on an oxygen-free ceramic,”Poroshk. Metall., Nos. 7–8, 50–54 (1998).

    Google Scholar 

  18. R. McLachlan, M. Blaszkiewicz, and R. Newnham, “Electrical resistivity of composites,”J. Am. Ceram. Soc.,73, No. 8, 2187–2203 (1990).

    Article  CAS  Google Scholar 

  19. W. J. Kim, M. Taya, K. Yamada, and N. Kamiy, “Percolation study on electrical resistivity of SiC/Si3N4 composites with segregate distribution,”J. Appl. Phys.,83, No. 5, 2593–2598 (1998).

    Article  CAS  Google Scholar 

  20. V. V. Skorokhod, “Structural-percolation effects in the theory of generalized conductivity of ceramics and ceramic composites,”Polish Ceramic Bulletin (Ceramics), No. 9(47), 39–46 (1995).

    Google Scholar 

  21. O. F. Boitsev and V. Ya. Petrovskii, “Effect of the fractal dimensionality of percolation clusters on the conductivity of resistive composites,” in:Nowoczesne Metody Badan Technologije Materialow Ceramicznych, Warsaw (1988), pp. 213–219.

Download references

Authors

Additional information

Institute for Problems of Materials Science, Ukraine National Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 3–4(406), pp. 3–16, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovskii, V.Y., Skorokhod, V.V. Physical principles and technological aspects of the production of gradient composites based on an oxygen-free ceramics. Powder Metall Met Ceram 38, 115–125 (1999). https://doi.org/10.1007/BF02676036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676036

Keywords

Navigation