Skip to main content
Log in

Mechanism of singlet-oxygen induced delayed fluorescence of bacteriopheophytin in laser excitation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

The relative intensity of photosensitized phosphorescence of singlet oxygen (1O2) at 1270 nm (L1270) and1O2-induced delayed fluorescence (Ldf) of bacteriopheophytin a (BPh) (770 nm) in air-saturated solutions of BPh in hexafluorobenzene in excitation by 337-nm pulses of a nitrogen laso is investigated. It is established that Ldf≪L1270. The ratio of the initial intensity of delayed fluorescence and phosphorescence of1O2(Ldf)0/(L1270)0 changed from 0.02 to 0.30 as a function of the energies of laser pulses (2.5–5.0 mJ/cm1) and the BPh concentration (6–18 μM). As the index of quantum efficiency of the delayed fluorescence, the authors used the coefficient

$$\alpha = [(L_{df} )_0 /(L_{1{\text{270}}} )_0 ]k_r /(\gamma f[^1 O_{\text{2}} ]_0 [Bpn),$$

where [1O2]0 is the initial concentration of1O2 after the laser burst; [Bpn] is the concentration of BPh; kr is the constant of the rate of1O2 radiative deactivation in the solvent under study; γf is the quantum yield of BPh fluorescence. It is established that this coefficient is smaller by a factor of ∼2000 than in phthalocyanine, while its absolute value is ∼2·1010M−2sec−1. The saturation of BPh solutions with oxygen at atmospheric pressure is shown to lead to a fivefold attenuation of the delayed fluorescence as compared to air-saturated solutions. The possibility of BPh triplet molecules being involved in the radiation of delayed fluorescence of the pigment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Krasnovskii, Jr.,Izv. Akad. Nauk SSSR, Ser. Fiz.,41, 343–348 (1978).

    Google Scholar 

  2. A. A. Krasnovsky, Jr.,Photochem. Photobiol.,29, No. 1, 29–36 (1979).

    Google Scholar 

  3. A. A. Krasnovskii, Jr. and K. V. Neverov,Biofizika,33, 884–886 (1988).

    Google Scholar 

  4. A. A. Krasnovsky, Jr. and K. V. Neverov,Chem. Phys. Lett.,167, No. 6, 591–597 (1990).

    Article  ADS  Google Scholar 

  5. K. V. Neverov and A. A. Krasnovskii, Jr.,Opt. Spektrosk.,71, No. 1, 691–696 (1991).

    Google Scholar 

  6. K. V. Neverov and A. A. Krasnovsky, Jr.,Chem. Phys. Lett.,189, No. 2, 189–192 (1992).

    Article  ADS  Google Scholar 

  7. A. A. Krasnovsky, Jr. and C. S. Foote,J. Amer. Chem. Soc.,115, No. 14, 6013–6016 (1993).

    Article  Google Scholar 

  8. P-T. Chou, G-T. Wei, C-H. Lin, C-Y. Wei, and C-H. Chang,J. Amer. Chem. Soc.,118; 3031–3032 (1996).

    Article  Google Scholar 

  9. P-T. Chou, Y-C. Chen, G-Y. Wei, S-J. Chen, H-L. Lu, and T-W. Wei,J. Phys. Chem. A: Chemistry,101, 8581–8586 (1997).

    Article  Google Scholar 

  10. A. A. Krasnovsky, Jr., Y-L. Fu, and C. S. Foote,Photochem. Photobiol.,61S, 22S (1995).

    Google Scholar 

  11. A. A. Krasnovskii, Jr. Yu. Fu, M. E. Bashtanov, S. Murphy, and C. S. Foote,Opt. Spektrosk.,83, No. 4, 616–620 (1997).

    Google Scholar 

  12. A. A. Krasnovskii, Jr. Yu. Fu, M. E. Bashtanov, S. Murphy, and C. S. Foote,Photochem. Photobiol. 675, 77S (1998).

    Google Scholar 

  13. Yu. Fu, A. A. Krasnovsky, Jr. and C. S. Foote,J. Phys. Chem. A: Chemistry,101, No. 14, 2552–2554 (1997).

    Article  Google Scholar 

  14. A. U. Khan and M. Kasha,J. Amer. Chem. Soc.,88, 1574–1576 (1966).

    Article  Google Scholar 

  15. T. Wilson,J. Amer. Chem. Soc.,91, No. 9, 2387–2388 (1969).

    Article  Google Scholar 

  16. J. Stauff and H. Fuhr,Ber. Buns. Physik. Chem.,B73, H3, 245–251 (1969).

    Google Scholar 

  17. E. A. Ogryzlo and A. E. Pearson,J. Phys. Chem.,72, No. 7, 2913–2916 (1968).

    Article  Google Scholar 

  18. P-T. Chou, Y-C Chen, and M-Z. Lee,J. Amer. Chem. Soc.,120, No. 19, 4883–4884 (1998).

    Article  Google Scholar 

  19. A. A. Krasnovskii, Jr., E. A. Venediktov, and O. V. Chernenko,Biofizika,27, 966–972 (1982).

    Google Scholar 

  20. I. M. Byteva, K. I. Salokhiddinov, and S. L. Bondarev,Zh. Fiz. Khim.,46, No. 7, 1743–1747 (1982).

    Google Scholar 

  21. C. Tanelian and C. Wolf,Photochem. Photobiol.,48, No. 3, 277–280 (1988).

    Google Scholar 

  22. A. A. Krasnovskii, Jr., M. A. J. Rodgers, M. G. Galpern, B. Richter, M. E. Kenney, and E. A. Lukjanetz,Photochem. Photobiol.,55, No. 5, 691–696 (1992).

    Article  Google Scholar 

  23. A. A. Gorman, M. Ali, I. Hamblett, and T. J. Hill,J. Amer. Chem. Soc.,117, 10751–10752 (1995).

    Article  Google Scholar 

  24. D. M. Baigel, A. A. Gorman, I. Hamblett, and T. J. Hill,J. Photochem. Photobiol. B: Biology,43, No. 3, 229–231 (1998).

    Article  Google Scholar 

  25. S. Murphy, K. Kondo, and C. S. Foote,J. Amer. Chem. Soc.,121, 37–51 (1999).

    Google Scholar 

  26. P. S. Vincett, E. M. Voigt, and K. E. Rieckhoff,J. Chem. Phys.,55, No. 8, 4131–4140 (1971).

    Article  ADS  Google Scholar 

  27. J. McVie, R. S. Sinclair, and T. G. Truscott,J. Chem. Soc., Farad. Trans. II,74, 1870–1879 (1978).

    Article  Google Scholar 

  28. L. Takiff and S. G. Boxer,J. Amer. Chem. Soc.,110, No. 13, 4425–4426 (1988).

    Article  Google Scholar 

  29. M. E. Bashtanov and A. A. Krasnovskii, Jr.Kvant. Elektron.,29, No. 2, 163–167 (1999).

    Article  ADS  Google Scholar 

  30. S. Yu. Egorov and A. A. Krasnovsky, Jr.,Proc. SPIE,1403, 611–621 (1990).

    Article  Google Scholar 

  31. T. Omata and N. Murata,Plant Cell Physiology,24, 1093–1100 (1983).

    Google Scholar 

  32. H. Shibata, H. Ochiaia, T. Kawashima, T. Okamoto, and I. Inamura,Biochim. Biophys. Acta 852, Nos. 2–3, 175–179 (1986).

    Google Scholar 

  33. M. Van der Rest and G. Gingras,J. Biol. Chem.,249, 6446–6452 (1974).

    Google Scholar 

  34. A. A. Krasnovski, Jr., I. V. Vychegzhanina, N. N. Drozdova, and A. A. Krasnovskii,Dokl. Akad. Nauk SSSR,283, No. 2, 474–477 (1985).

    Google Scholar 

  35. C. F. Boriand, D. J. McGarvey, T. G. Truscott, R. J. Cogdell, and E. J. Land,J. Photochem. Photobiol B: Biology,1, No. 1, 93–102 (1987).

    Article  Google Scholar 

  36. S. Yu. Egorov, A. A. Krasnovskii, Jr., I. V. Vychegzhanina, N. N. Drozdova, and A. A. Krasnovskii,Dokl. Akad. Nauk SSSR,310, No. 2, 471–475 (1990).

    Google Scholar 

  37. A. P. Losev, E. I. Sagun, and I. N. Nichiporovich,Khim. Fiz.,6, No. 7, 907–914 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reported at the VIIIth International Conference on Spectroscopy of Porphyrins and Their Analogs, Minsk, September 22–26, 1998.

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 4, pp. 504–508, July–August, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashtanov, M.E., Drozdova, N.N. & Krasnovskii, A.A. Mechanism of singlet-oxygen induced delayed fluorescence of bacteriopheophytin in laser excitation. J Appl Spectrosc 66, 550–555 (1999). https://doi.org/10.1007/BF02675384

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02675384

Key words

Navigation