Skip to main content
Log in

Dynamics of a free boundary in a binary medium with variable thermal conductivity

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We construct an asymptotic solution of the phase field system with variable thermal conductivity different in domains occupied by different phases. We show that, depending on relations between parameters characterizing the substance, the dynamics of the free interface between the phases is determined by solutions of the classical or modified Stefan problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Caginalp, “An analysis of a phase field model of a free boundary,”Arch. Rational Mech. Anal.,92, 205–245 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Caginalp and X. Chen, “Phase field equations in the singular limit of sharp interface problem,” in:On the Evolution of Phase Boundaries (M. Gurtin and G. B. McFadden, editors), Vol. 43, IMA Vol. Math. Appl, Springer, New York (1992), pp. 1–28.

    Google Scholar 

  3. L. Modica, “The gradient theory of phase translations and the minimal interphase criterion,”Arch. Rational Mech. Anal.,98, 123–142 (1986).

    MathSciNet  Google Scholar 

  4. S. Luckhaus and L. Modica, “The Gibbs-Thomson relation within the gradient theory of phase translations,”Arch. Rational Mech. Anal.,107, 71–83 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Luckhaus, “Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature,”European J. Appl. Math.,1, 101–111 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  6. P. I. Plotnikov and V. N. Starovoitov, “The Stefan problem as a limit of the phase field system,”Differentsial'nye Uravneniya [Differential Equations],29, No. 3, 461–471 (1993).

    MathSciNet  Google Scholar 

  7. H. M. Soner, “Convergence of the phase field equations to the Mullins-Sekerka problem with kinetic undercooling,”Arch. Rational Mech. Anal.,131, 139–197 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Caginalp, “Stefan and Hele-Shaw type models as asymptotic limits of the phase field equations,”Phys. Rev. A,39, 101–111 (1990).

    MathSciNet  Google Scholar 

  9. G. Caginalp and X. Chen, “Convergence of the phase field model to its sharp interphase limits,”European J. Appl. Math.,9, No. 4, 417–445 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Alikakos and P. Bates, “On the singular limit in a phase field model of a phase translation,”Ann. Inst. H. Poincaré. Phys. Théor.,5, 1–38 (1988).

    MathSciNet  Google Scholar 

  11. J. Carr and R. L. Pego, “Metastable patterns in solutions of\(u_t = \varepsilon ^2 u_{xx} - f(u)\),”Comm. Pure Appl. Math.,42, 523–576 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  12. X. Chen and C. M. Elliott, “Asymptotics for a parabolic double obstacle problem,”Proc. Roy. Soc. London. Ser. A,444, 429–445 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Nochetto and C. Verdi, “Convergence of double obstacle problem to the generalized geometric motion of fronts,”SIAM J. Math. Anal.,26, No. 4, 1514–1526 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. G. Danilov, G. A. Omel'yanov, and E. V. Radkevich, “Asymptotics of the phase field system and the modified Stefan problem,”Differentsial'nye Uravneniya [Differential Equations],31, No. 3, 483–491 (1995).

    MathSciNet  Google Scholar 

  15. V. G. Danilov, G. A. Omel'yanov, and E. V. Radkevich, “Justification of the asymptotics of the phase field system and the modified Stefan problem,”Mat. Sb. [Russian Acad. Sci. Sb. Math.],186, No. 12, 63–80 (1995).

    MathSciNet  Google Scholar 

  16. G. A. Omel'yanov and V. V. Trushkov, “A geometric correction to the free boundary problem,”Mat. Zametki [Math. Notes],63, No. 1, 151–153 (1998).

    MathSciNet  Google Scholar 

  17. V. P. Maslov and G. A. Omel'yanov, “Asymptotic soliton type solutions of equations with small dispersion,”Uspekhi Mat. Nauk [Russian Math. Surveys],36, No. 3, 63–126 (1981).

    MATH  MathSciNet  Google Scholar 

  18. V. P. Maslov, V. G. Danilov, and K. A. Volosov,Mathematical Modeling of Heat and Mass Transfer Processes [in Russian], Nauka, Moscow (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromMatematicheskie Zametki, Vol. 66, No. 2, pp. 231–241, August, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omel’yanov, G.A., Trushkov, V.V. Dynamics of a free boundary in a binary medium with variable thermal conductivity. Math Notes 66, 181–189 (1999). https://doi.org/10.1007/BF02674876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674876

Key words

Navigation