Skip to main content
Log in

Studies on the oxidation-reduction potential of protozoan cultures

I. The effect of-SH onChilomonas paramecium

  • Abhandlungen
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

  1. 1.

    Positive evidence is offered of an acceleration of cell division by-SH in bacteria-free cultures ofChilomonas paramecium.

  2. 2.

    When hydrogen peroxide is added to standard culture medium no growth is obtained, but relatively rapid growth occurs if both peroxide and a high concentration of-SH are added.

  3. 3.

    This antagonistic action of-SH and peroxide is explained on the basis of the oxidation-reduction potentials involved.

  4. 4.

    It is suggested that the oxidation-reduction potential of the medium might explain, at least to some extent, the “specific” action of the-SH radial.

  5. 5.

    Methylene blue is less toxic toChilomonas paramecium in tubes sealed with oil than in unsealed tubes of the same medium. This might be explained as being due to the higher oxidation-reduction potential in the unsealed cultures or to the oxidation accelerative power of methylene blue in the presence of oxygen.

  6. 6.

    It is also suggested that the phenomena of autocatalysis and allelocatalysis might be explained on the basis of adjustments in oxidation-reduction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allyn, W. P. andI. L. Baldwin, 1930. The effect of the oxidation-reduction character of the medium on the growth of an aerobic form of bacteria. Jour. Bact.20, 417–438.

    CAS  Google Scholar 

  • —, 1932. Oxidation-reduction potentials in relation to the growth of an anaerobic form of bacteria. Jour. Bact.23, 369–398.

    CAS  Google Scholar 

  • Aubel, E. andR. Lévy, 1929. Le potentiel d'oxydo-réduction dans les larves de mouche (Phormia regina). C. R. Soc. Biol.101, 1019–20.

    CAS  Google Scholar 

  • Aubel, E., P. Mauriac andE. Aubertin, 1929. Sur le potentiel d'oxydo-réduction et sur les vitesses des procès d'oxydo-réduction des cellules de mammifères. Ann. d. Physiol.5, 310–317.

    Google Scholar 

  • Barron, E. S. G. andL. A. Hoffman, 1930. The catalytic effect of dyes on the oxygen consumption of living cells. Jour. Gen. Physiol.,13, 483–494.

    Article  CAS  Google Scholar 

  • Brown, L. W. andI. L. Baldwin, 1932. The influence of the oxidation-reduction character of the medium on the aerobic growth of certain bacteria. Jour. Bact.23, 56.

    Google Scholar 

  • —, 1933. The oxidation-reduction character of agar media and the growth of aerobic bacteria. Jour. Bact.25, 29.

    CAS  Google Scholar 

  • Chambers, R., B. Cohen andH. Pollack, 1932. Intracellular oxidation-reduction studies. IV. Reduction potentials of European marine ova andAmoeba proteus as shown by indicators. Protoplasma17, 376–387.

    Article  Google Scholar 

  • Cohen, B., R. Chambers andP. Reznikoff, 1928. Intracellular oxidation-reduction studies. I. Reduction potentials ofAmoeba dubia by micro-injection of indicators. Jour. Gen. Physiol.,11, 585–612.

    Article  CAS  Google Scholar 

  • Cutler, D. W. andL. M. Crump, 1924. The rate of reproduction in artificial culture ofColpidium colpoda. Part III. Biochem. Jour.18, 905–912.

    CAS  Google Scholar 

  • Darby, Hugh H. 1930. Studies on growth accelerations in Protozoa and yeast. Jour. Exp. Biol.7, 308–316.

    CAS  Google Scholar 

  • Dubos, René, 1929a. Observations on the oxidation-reduction properties of sterile bacteriological media. Jour. Exp. Med.49, 507–523.

    Article  CAS  Google Scholar 

  • —, 1929b. The initiation of growth of certain facultative anaerobes as related to oxidationreduction processes in the medium. Jour. Exp. Med.49, 559–573.

    Article  CAS  Google Scholar 

  • —, 1929c. The relation of the bacteriostatic action of certain dyes to oxidation-reduction processes. Jour. Exp. Med.49, 575–592.

    Article  CAS  Google Scholar 

  • Fox, H. M., 1921. An investigation into the cause of the spontaneous aggregation of flagellates and into the reactions of flagellates to dissolved oxygen. I and II. Jour. Gen. Physiol.3, 483–511.

    Article  CAS  Google Scholar 

  • Gaunt, R., 1931. Effect of sulphydryl compounds and dl-alanine on rate of development of eggs ofPhysa andLymnaea. Proc. Soc. Exp. Biol. Med.28, 660–663.

    CAS  Google Scholar 

  • Hall, I. C., 1921. Chemical criteria of anaerobiosis with special reference to methylene blue. Jour. Bact.6, 1–42.

    CAS  Google Scholar 

  • Hammett, D. W. andF. S. Hammett, 1932. The growth reactions of embryonic marine forms to sulfhydryl and sulfoxide. Protoplasma15, 59–70.

    Article  CAS  Google Scholar 

  • Hammett, F. S., 1929. The chemical stimulus essential for growth by increase in cell number. Protoplasma7, 297–322.

    Article  Google Scholar 

  • —, 1930. The natural chemical equilibrium regulative of growth by increase in cell number. Protoplasma11, 382–411.

    Article  CAS  Google Scholar 

  • —, 1931. The proliferative reaction of the skin to sulfhydryl and its biological significance. Protoplasma13, 331–347.

    Article  CAS  Google Scholar 

  • —, 1932. Growth retardation with suboxidized cystin. Anat. Rec.54, 41.

    Google Scholar 

  • Hammett, F. S. andD. W. Hammett, 1932a. The influence of sulfhydryl and sulfoxide on differential growth within the regenerating chela of the hermit crab (Pagurus longicarpus). Protoplasma16, 253–286.

    Article  CAS  Google Scholar 

  • ——, 1932b. The influence of sulfhydryl on the formation of aberrant disorganized overgrowths in the regenerating right chela of the hermit crab (Pagurus longicarpus). Protoplasma17, 321–357.

    Article  CAS  Google Scholar 

  • Hammett, F. S. andS. P. Reimann, 1929. Cell proliferation response to sulfhydryl in mammals. Jour. Exp. Med.50, 445–448.

    Article  CAS  Google Scholar 

  • Hammett, F. S. andD. W. Smith, 1931. The influence of sulfhydryl and sulfoxide on gross regeneration in the hermit crab (Pagurus longicarpus). Protoplasma13, 261–267.

    Article  CAS  Google Scholar 

  • Hastings, E. G. andE. McCoy, 1932. The use of reduced iron in the cultivation of anaerobic bacteria. Jour. Bact.23, 54–56.

    Google Scholar 

  • Hewitt, L. F., 1931. Oxidation-reduction potentials in bacteriology and biochemistry. London Country Council. London.

    Google Scholar 

  • Hopkins, F. G. andM. Dixon, 1922. On glutathione. II. A thermostable oxidation-reduction system. Jour. Biol. Chem.54, 527–563.

    CAS  Google Scholar 

  • Jacobs, M. H., 1922. The influence of ammonium salts on cell reaction. Jour. Gen. Physiol.,5, 181–188.

    Article  CAS  Google Scholar 

  • Jahn, Theo, L., 1929. Studies on the physiology of the euglenoid flagellatus. I. The relation of the density of population to the growth rate ofEuglena. Biol. Bull.57, 81–106.

    Article  Google Scholar 

  • —, 1930. Studies on the physiology of the euglenoid flagellates. II. The autocatalytic equation and the question of an autocatalyst in growth ofEuglena. Biol. Bull.58, 281–287.

    Article  Google Scholar 

  • —, 1931. Studies on the physiology of the euglenoid flagellates. III. The effect of hydrogen ion concentration on the growth ofEuglena gracilis Klebs. Biol. Bull.61, 387–399.

    Article  CAS  Google Scholar 

  • —, 1932a. The effect of temperature and the acetate on growth ofEuglena gracilis. Anat. Rec.54, 22.

    Google Scholar 

  • —, 1932b. The effect of-SH on the growth ofChilomonas paramecium. Anat. Rec.54, 41–42.

    Google Scholar 

  • Johnson, W. H., 1933. Effects of population density on the rate of reproduction inOxytricha. Physiol. Zool.6, 22–54.

    Google Scholar 

  • Kendall, E. C. andF. F. Nord, 1926. Reversible oxidation-reduction of cysteine-cystine and reduced and oxidized glutathione. Jour. Biol. Chem.69, 295–337.

    CAS  Google Scholar 

  • Kendall, E. C. andD. F. Loewen, 1928a. The reducing power of cysteine. Biochem. Jour.22, 649–668.

    CAS  Google Scholar 

  • ——, 1928b. The mechanism of oxidation-reduction potential of cysteine and cystine. Biochem. Jour.22, 669–682.

    CAS  Google Scholar 

  • Knight, B. C. J. G. andP. Fildes, 1930. Oxidation-reduction studies in relation to bacterial growth. III. The positive limit of oxidation-reduction potential required for the germination ofB. tetani spores in vitro. Biochem. Jour.24, 1496–1502.

    CAS  Google Scholar 

  • Loeffer J. B., 1932. Relation of hydrogen ion concentration to growth of Chliomonas. Anat. Rec.54, 102.

    Google Scholar 

  • Mainx, Felix, 1928. Beiträge zur Morphologie und Physiologie der Eugleninen. Arch. f. Protist.60, 305–414.

    CAS  Google Scholar 

  • McPherson, M., G. A. Smith, andA. M. Banta, 1932. New data with possible bearings uponRobertson's theory of allelocatalysis. Anat. Rec.54, 23.

    Google Scholar 

  • Michaelis, L., 1930. Oxidation-reduction potentials. J. B. Lippincott Co. Philadelphia and London.

    Google Scholar 

  • Morgulis, S. andD. E. Green, 1931. Effect of sulfhydryl compounds on regeneration inPcdarke obscura. Protoplasma14, 161–169.

    Article  CAS  Google Scholar 

  • Needham, J. andM. Needham, 1927. The oxidation-reduction potential of protoplasm; a review. Protoplasma1, 255–294.

    Article  Google Scholar 

  • Olivo, O. M., 1932. Potenzialità di accerescimento di poche cellule somatiche isolate. Archivio Ital. di Anat. e di Embr.30, 241–258.

    Google Scholar 

  • Petersen, W. A., 1929. The relation of density of population to rate of reproduction inParamecium caudatum. Physiol. Zool.,2, 221–254.

    Google Scholar 

  • Plotz, H. andJ. Gelosa, 1930. Relations entre la croissance des micro-organismes anaérobes et le potentiel du milieu de culture. Ann. Inst. Pasteur,45, 613–640.

    CAS  Google Scholar 

  • Quastel, J. H. andM. Stephenson, 1926. Experiments on “strict” anaerobes. Biochem. Jour.20, 1125–1137.

    CAS  Google Scholar 

  • Reimann, S. P. andF. S. Hammett, 1929. Cell proliferation response to sulfhydryl in Man. Proc. Soc. Exp. Biol. Med.27, 20–22.

    CAS  Google Scholar 

  • Robertson, T. B., 1923. The chemical basis of growth and senescence. J. B. Lippincott Co. Philadelphia and London.

    Google Scholar 

  • Sharpe, M. J., 1930. The influence of H2S on reproduction rate inParamecium caudatum. Protoplasma10, 251–252.

    Article  CAS  Google Scholar 

  • Smith, G. A., 1932. Strength of culture medinm as a factor in fission rate ofParamecium caudatum. Anat. Rec.54, 100.

    Google Scholar 

  • Snell, G. D., 1929. An inherent defect in the theory that growth rate is controlled by an autocatalytic process. Proc. Nat. Acad. Sci.,15, 274.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T. P., 1930. Physiological significance of H-HS for the development of sea urchin eggs. Anat. Rec.47, 309.

    Google Scholar 

  • Voegtlin, C. andH. W. Chalkley, 1930. Chemistry of cell division. I. The effect of glutathione on cell division inAmoeba proteus. Public. Health Reports45, 3041–3063.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Text-figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahn, T.L. Studies on the oxidation-reduction potential of protozoan cultures. Protoplasma 20, 90–104 (1933). https://doi.org/10.1007/BF02674816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674816

Keywords

Navigation