Skip to main content
Log in

A study of the reduction of hematite to magnetite using a stabilized zirconia cell

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Batches hematite particles were reduced to magnetite by hydrogen in small scale fluidized bed, from which samples of partially reduced ore could be extracted for metallographic studies or surface area measurements. A stabilized zirconia cell was used to monitor the gas phase composition at eight locations in the bed. With this device a complete picture of the consumption of hydrogen was established that could detect small changes in the efficiency of the reduction reaction. Approximate rates of reduction could also be calculated. Hematite reduction took place in three stages; an initial period in which the efficiency of the reaction increased with time, followed by a period of relatively constant reduction efficiency, and finally after about 85 to 90 pct transformation a period of falling efficiency. Wustite did not form while hematite was present. The efficiency of the reaction increased when the hematite particles were coated with platinum and decreased when the particles were coated either with silica or with a naturally occurring dirt film. A kinetic and morphological analysis indicated that the reaction was rate controlled by a surface reaction at the bottom of pores in the magnetite. These pores do not appear to penetrate to the receding hematite interface. The initial increase in the efficiency of the reaction was attributed to the developing pore structure of the magnetite which increased the area for reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. J. S. Sheasby and J. F. Gransden:Can. Met. Q., 1974, vol. 13, pp. 479–84.

    CAS  Google Scholar 

  2. J. S. Sheasby and J. F. Gransden:Met.-Slag-Gas React. Processes, [Pap. Int. Symp.], Z. A. Foroulis and W. W. Smeltzer, eds., pp. 226–37, Electrochem. Soc, Inc., Princeton, NJ, 1975.

    Google Scholar 

  3. J. R. Porter and P. R. Swann:Ironmaking Steelmaking, 1977, vol. 4, no. 5, pp. 300–07.

    CAS  Google Scholar 

  4. P. R. Swann and N. J. Tighe:Met. Trans. B, 1977, vol. 8B, pp. 479–87.

    CAS  Google Scholar 

  5. G. Nabi and W. K. Lu:Trans. TMS-AIME, 1968, vol. 242, pp. 2471–77.

    CAS  Google Scholar 

  6. G. Nabi: Ph.D. Thesis, McMaster Univ., Hamilton, Ontario, Canada, 1973.

    Google Scholar 

  7. P. C. Hayes:Met. Trans. B, 1979, vol. 10B, pp. 211–17.

    Article  CAS  Google Scholar 

  8. H. Brill-Edwards, B. L. Daniell, and R. L. Samuel:J. Iron Steel Inst., vol. 203, pp. 361–68.

  9. E. T. Turkdogan:Met. Trans. B, 1978, vol. 9B, pp. 163–79.

    Article  CAS  Google Scholar 

  10. C. Y. Wen:Ind. Eng. Chem., 1968, vol. 60, no. 9, pp. 34–54.

    Article  CAS  Google Scholar 

  11. R. H. Spitzer, F. S. Manning, and W. O. Philbrook:Trans. TMS-AIME, 1966, vol. 236, pp. 726–42.

    CAS  Google Scholar 

  12. O. Levenspiel:Chemical Reaction Engineering, p. 311, John Wiley and Sons, New York, 1972.

    Google Scholar 

  13. F. M. Nelson and F. T. Eggertsen:Anal. Chem., 1958, vol. 30, pp. 1387–90.

    Article  Google Scholar 

  14. I. Barin and O. Knacke:Thermochemical Properties of Inorganic Substances, Springer-Verlag, New York, 1973.

    Google Scholar 

  15. D. Caplan, G. I. Sproule, R. J. Hussey, and M. J. Graham:Oxid. Met., 1978, vol. 12, pp. 67–82.

    Article  CAS  Google Scholar 

  16. J. F. Richardson and J. Sezekely:Trans. Inst. Chem. Eng., 1961, vol. 39, pp. 212–22.

    CAS  Google Scholar 

  17. C. N. Satterfield and T. M. Sherwood:The Role of Diffusion in Catalysis, pp. 5–28, Addison Wesley Publishing Co., New York, 1963.

    Google Scholar 

  18. E. T. Turkdogan, R. G. Olsson, and J. V. Vinters:Met. Trans., 1971, vol. 2, pp. 3189–96.

    CAS  Google Scholar 

  19. D. Caplan: private communication, N.R.C., Ottawa, Canada.

  20. C. Wagner:Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  CAS  Google Scholar 

  21. S. E. Khalafalla, G. W. Reimers, and M. J. Baird:Met. Trans., 1974, vol. 5, pp. 1013–18.

    Article  CAS  Google Scholar 

  22. G. Subat and J.-J. Engell:Tech. Mitt. Krupp, Forschungsber., 1968, vol. 26, pp. 117–24.

    CAS  Google Scholar 

  23. E. I. Turkdogan and J. V. Vinters:Can. Met. Q., 1973, vol. 12, pp. 9–21.

    CAS  Google Scholar 

  24. G. H. Geiger and J. B. Wagner, Jr.:Trans. TMS-AIME, 1965, vol. 233, pp. 2092–2100.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, M.V., Sheasby, J.S. A study of the reduction of hematite to magnetite using a stabilized zirconia cell. Metall Trans B 12, 177–185 (1981). https://doi.org/10.1007/BF02674771

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674771

Keywords

Navigation