Skip to main content
Log in

Modeling of continuous strip production by rheocasting

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A process was experimentally and mathematically modeled for continuous and direct production of metal strip from its molten state by the use of Rheocasting. The process comprises 1) continuous production of a Rheocast semisolid alloy, and 2) direct shaping of the semisolid into strip. Sn-15 pct Pb was used as the modeling alloy. Crack formation and surface quality of the strip produced depend on fraction solid and deformation force. Continuous, sound strip could be obtained with good surface quality when fraction solid was between 0.50 and 0.70 and deformation force did not exceed a given maximum. Sheet thickness depends on deformation force, fraction solid, rotor rate of Rheocaster and production line speed. At constant deformation force, sheet thickness increases as fraction solid increases, rotor rate decreases and line speed is reduced. Sheet thickness is larger in the center than in the edge, but the difference is reduced by applying edgers. Some segregation of lead toward the edges is observed, and the segregation increases as amount of deformation is increased. A mathematical model for heat flow, solidification and deformation was constructed. The model predicts the point of completion of solidification in the strip and sheet thickness as a function of deformation force and line speed. Calculations are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szekely: “Radically Innovative Steelmaking Technology”, Report submitted to Office of Technology Assessment, U.S. Congress, 1978.

  2. C. J. Petry:Light Met. Age, 1975, vol. 33, no. 11–2, pp. 34–37.

    Google Scholar 

  3. G. Vassily:Light Met. Age, 1975, vol. 33, no. 11-12, pp. 5–8.

    Google Scholar 

  4. P. K. Raiford:Light Met. Age, 1975, vol. 33, pp. 16–22.

    Google Scholar 

  5. L. W. Collings, Jr., J. G. Donleavy, and O. J. Rassi:Nonferrous Wire Handbook, vol. 1, pp. 37–69, The Wire Association International Inc., Guilford, CT, 1977.

    Google Scholar 

  6. K. Tromel and G. Bollig: Canadian Patent No. 937381, November 27, 1973.

  7. E. A. Mizikar, W. M. Wojcik, and K. Li: U.S. Patent No. 3,345,738, October 10, 1967.

  8. D. B. Spencer, R. Mehrabian, and M. C. Flemings:Met. Trans., 1972, vol. 3, pp. 1925–32.

    Article  CAS  Google Scholar 

  9. R. Mehrabian and M. C. Flemings:Trans. Am. Foundrymen’s Soc, 1972, vol. 80, pp. 173–82.

    CAS  Google Scholar 

  10. E. F. Fascetta, R. G. Riek, R. Mehrabian, and M. C. Flemings:Trans. Am. Foundrymen’s Soc, 1973, vol. 81, pp. 95–100.

    Google Scholar 

  11. K. P. Young, R. G. Riek, J. F. Boylan, R. L. Bye, B. E. Bond, and M. C. Flemings:Trans. Am. Foundrymen’s Soc, 1976, vol. 84, pp. 169–74.

    CAS  Google Scholar 

  12. R. G. Riek, K. P. Young, N. Matsumoto, R. Mehrabian, and M. C. Flemings: Paper No. G-T75-153, Eighth S.D.C.E. International Die Casting Exposition and Congress, Cobo Hall, Detroit, MI, March 17–20, 1975.

  13. M. C. Flemings, R. G. Riek, and K. P. Young: Paper No. G-T77-P92, Society of Die Casting Engineers Exposition and Congress, Milwaukee, 1977.

  14. R. A. Joly and R. Mehrabian:J. Mater. Sci., 1976, vol. 11, pp. 1393–1418. (R. A. Joly, Ph.D. Thesis, MIT, 1974.)

    Article  CAS  Google Scholar 

  15. V. Laxmanan: Sc.D. Thesis, MIT, 1979.

  16. DYSYS, MIT Joint Computer Facility, 1978.

  17. J. H. Hockett:J. Iran Steel Inst., 1965, vol. 203, no. 1, pp. 27–35.

    Google Scholar 

  18. R. E. Gaskell:J. Appl. Mech., 1950, vol. 17, pp. 334–36.

    Google Scholar 

  19. I. Brazinsky, E. F. Cosway, C. F. Valle, J. R. C. Jones, and V. Story:J. Appl. Polym. Sci., 1970, vol. 14, pp. 2771–84.

    Article  CAS  Google Scholar 

  20. W. W. Alston, Jr. and K. N. Still:J. Appl. Polym. Sci., 1973, vol. 17, pp. 3157–74.

    Article  Google Scholar 

  21. C. Kiparissides and J. Vlachopoulos:Polym. Eng. Sci., 1976, vol. 16, pp. 712–719.

    Article  CAS  Google Scholar 

  22. J. R. A. Pearson:Mechanical Principles of Polymer Heat Processing, p. 60, Pergamon Press, Oxford, 1966.

    Google Scholar 

  23. O. J. Kleppa:J. Phys. Chem., 1955, vol. 59, pp. 175–81.

    Article  CAS  Google Scholar 

  24. D. R. Stull and H. Prophet: JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS 37, Washington, D.C., 1971.

  25. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley:Selected Values of the Thermodynamic Properties of the Elements, pp. 379–85 and 477–86, ASM, Metals Park, OH, 1973.

    Google Scholar 

  26. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, pp. 1265–69, ASM, Metals Park, OH, 1973.

    Google Scholar 

  27. D. G. Backman, R. Mehrabian, and M. C. Flemings:Met. Trans. B, 1977, vol. 8B, pp. 471–77.

    CAS  Google Scholar 

  28. B. E. Bond: Sc.D. Thesis, MIT, 1978.

Download references

Author information

Authors and Affiliations

Authors

Additional information

T. MATSUMIYA, formerly with Massachusetts Institute of Technology, Cambridge, MA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumiya, T., Flemings, M.C. Modeling of continuous strip production by rheocasting. Metall Trans B 12, 17–31 (1981). https://doi.org/10.1007/BF02674755

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674755

Keywords

Navigation