Skip to main content
Log in

Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Borovkov, A. A., “Large deviation probabilities for random walks with semiexponential distributions,” Sibirsk. Mat. Zh. (to appear).

  2. Borovkov A. A. andBorovkov K. A., “Large deviation probabilities for random walks with a regular distribution of jumps,” Dokl. Akad. Nauk,371, 14–16 (2000).

    Google Scholar 

  3. Borovkov A. A. andBorovkov K. A., On Large Deviation Probabilities for Random Walks. I. Regularly Varying Distribution Tails. II. Regular Exponential Tails [in Russian], [Preprint, No. 62], Sobolev Inst. Mat., Novosibirsk (1999).

    Google Scholar 

  4. Borovkov A. A. and Boxma O. J., Refined Asymptotics for Large Deviations of Sums and Maxima of Sequentional Sums of Random Variables with Leavy Tails, [Preprint EURANDOM], Eindhoven (2000).

  5. Nagaev S. V., “Some limit theorems for large deviations,” Teor. Veroyatnost. i Primenen.,10, No. 2, 231–254 (1965).

    Google Scholar 

  6. Nagaev S. V. andFuk D. Kh., “Probability inequalities for sums of independent random variables,” Teor. Veroyatnost. i Primenen.,16, No. 4, 660–675 (1971).

    Google Scholar 

  7. Borovkov A. A., “Remarks on inequalities for sums of random variables,” Teor. Veroyatnost. i Primenen.,17, No. 3, 590–591 (1972).

    Google Scholar 

  8. Borovkov A. A., Stochastic Processes in Queueing Theory [Russian], Nauka, Moscow (1972).

    Google Scholar 

  9. Pinelis I. F., “A problem on large deviations in a space of trajectories,” Teor. Veroyatnost. i Primenen.,26, No. 1, 73–87 (1981).

    MATH  Google Scholar 

  10. Pinelis I. F., “On asymptotic equivalence of large deviation probabilities of the sum and maximum of independent random variables,” in: Probability Limit Theorems (Trudy Inst. Mat., Vol. 5) [in Russian], Nauka, Novosibirsk, 1985, pp. 144–173.

    Google Scholar 

  11. Korshunov D. A., “Large deviation probabilities of the maximum of sums of independent random variables with negative mean and exponential distribution,” Teor. Veroyatnost. i Primenen. (to appear).

  12. Veraverbeke N., “Asymptotic behaviour of Wiener-Hopf factors of a random walk,” Stochastic Process. Appl.,5, No. 1, 27–37 (1977).

    Article  MATH  Google Scholar 

  13. Gnedenko B. V. andKolmogorov A. N., Limit Distributions for Sums of Independent Random Variables [Russian], Gostekhizdat, Moscow (1949).

    Google Scholar 

  14. Davis R. A. andHsing T., “Point processes and partial sum convergence for weakly dependent random variables with infinite variance,” Ann. Probab., No. 23, 879–917 (1995).

    MATH  Google Scholar 

  15. Heyde C. C., “A contribution to the theory of large deviations for sums of independent random variables,” Z. Warsch. Verw. Geb., No. 7, 303–308 (1967).

    Article  MATH  Google Scholar 

  16. Heyde C. C., “On large deviation probabilities in the case of attraction to a non-normal stable law,” Sankhya,A30, No. 3, 253–258 (1968).

    MATH  Google Scholar 

  17. Godovanchuk V. V., “Probabilities of large deviations for sums of independent random variables attracted to a stable law,” Teor. Veroyatnost. i Primenen.,34, 602–608 (1989).

    Google Scholar 

  18. Rozovskiî L. V., “Large deviation probabilities for sums of independent random variables with a common distribution function in the attraction domain of the normal law,” Teor. Veroyatnost. i Primenen.,34, No. 4, 686–705 (1989).

    Google Scholar 

  19. Mikosh T. andNagaev A. V., “Large deviations of heavy-tailed sums with applications in insurance,” Extremes,1, No. 1, 81–110 (1998).

    Article  Google Scholar 

  20. Nagaev A. V., “Large deviations,” Ann. Probab., No. 7, 745–789 (1979).

    MATH  Google Scholar 

  21. Nagaev A. V., “On a property of sums of independent random variables,” Teor. Veroyatnost. i Primenen.,22, No. 2, 335–346 (1977).

    Google Scholar 

  22. Bentkus V. Yu. andBloznyalis M. M., “Nonuniform estimate of the rate of convergence in the CLT with stable limit distribution,” Lit. Mat. Sb., No. 29, 14–26 (1989).

    Google Scholar 

  23. Heyde C. C., “On the maximum of sums of random variables and the supremum functional for stable processes,” J. Appl. Probab., No. 6, 419–429 (1969).

    Article  MATH  Google Scholar 

  24. Mikosh T., “On the law of the iterated logarithm for independent random variables outside the domain of partial attraction of the normal law,” Vestnik Leningrad. Univ.,13, No. 3, 35–39 (1984).

    Google Scholar 

  25. Khokhlov Yu. S., “The iterated logarithm rule for random vectors with operator stable limit law,” Vestnik Moskov. Univ., No. 3, 62–69 (1995).

    Google Scholar 

  26. Borovkov A. A., Probability [in Russian], Èditorial, Moscow; Izdat. Inst. Mat., Novosibirsk (1999).

    MATH  Google Scholar 

Download references

Authors

Additional information

Novosibirsk. Translated fromSibirskiî Matematicheskiî Zhurnal, Vol. 41, No. 5, pp. 997–1038, September–October, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovkov, A.A. Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib Math J 41, 811–848 (2000). https://doi.org/10.1007/BF02674739

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674739

Keywords

Navigation