Skip to main content
Log in

Numerical simulation of the structure of two-dimensional gaseous detonation of an H2-O2-Ar mixture

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A two-dimensional structure of detonation waves in an 2H2+O2+X Ar mixture is numerically studied in a wide range of initial pressures and degrees of dilution. Good qualitative agreement of the numerical results with experimental data is obtained. The effect of the method of initiation (by one or several sites, symmetric or asymmetric) on the steady structure of detonation waves is studied. The changes in the wave structure induced by variation of the channel width are examined. It is shown that the behavior of the two-dimensional wave structure is qualitatively different for mixtures withX=0 andX>0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan,Detonation Front Structure in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  2. W. Fickett and W. C. Davis,Detonation, Univ. of California Press, Berkeley, CA (1979).

    Google Scholar 

  3. Ya. B. Zel'dovich and A. S. Kompaneets,Detonation Theory [in Russian], Gostekhizdat, Moscow (1955).

    Google Scholar 

  4. J. J. Erpenbeck, “Stability of idealized one-reaction detomations,”Phys. Fluids,7, 484–696 (1964).

    Google Scholar 

  5. H. I. Lee and D. S. Stewart, “Calculation of linear detonation instability: One-dimensional instability of plane detonation,”J. Fluid Mech.,216, 103–132 (1990).

    Article  MATH  ADS  Google Scholar 

  6. S. Taki and T. Fujiwara, “Numerical analysis of twodimensional nonsteady detonations,”AIAA J.,16, No. 1, 73–77 (1978).

    Article  ADS  Google Scholar 

  7. S. Taki and T. Fujiwara, “Numerical simulation of triple shock behavior of gaseous detonation,” in:18th Symp. (Int.) on Combustion, The Combustion Inst. (1981), pp. 1671–1680.

  8. S. Taki and T. Fujiwara, “Numerical simulations of the establishment of gaseous detonation,” in:Progress in Astronautics and Aeronautics, Vol. 94:Dynamics of Shock Waves, Explosions, and Detonations, New York (1983), pp. 186–200.

  9. V. V. Markov, “Numericla simulation of the formation of a multifront structure of a detonation wave,”Dokl. Akad. Nauk SSSR,258, No. 2, 314–317 (1981).

    Google Scholar 

  10. E. S. Oran, J. P. Boris, T. Young, et al. “Numerical simulations of detonations in hydrogen-air and methane-air mixtures,” in:18th Symp. (Int.) on Combustion, The Combustion Inst. (1981), pp. 1641–1649.

  11. K. Kailasanath, E. S. Oran, J. P. Boris, and T. R. Young, “Determination of detonation cell size and the role of transverse waves in two-dimensional detonations,”Combust. Flame,61, 199–209 (1985).

    Article  Google Scholar 

  12. E. S. Oran, K. Kailasanath, and R. H. Guirguis, “Numerical simulations of the development and structure of detonations,” in:Progress in Astronautics and Aeronautics, Vol. 114:Dynamics of Explosions, Washington (1988), pp. 155–169.

  13. M. H. Lefebvre, E. S. Oran, K. Kailasanath, and P. J. van Tiggelen, “The influence of the heat capacity and diluent on detonation structure,”Combust. Flame,95, 206–218 (1993).

    Article  Google Scholar 

  14. M. N. Lefebvre, E. S. Oran, K. Kailasanath, and P. J. van Tiggelen, “Simulation of cellular structure in a detonation wave,” in:Progress in Astronautics and Aeronautics, Vol. 153:Dynamics Aspects of Detonations, Washington (1993), pp. 64–77.

  15. T. Kratzel, M. Fischer, and E. Pantow, “Vorticityinduced recoupling of a decoupled detonation wave,” in: Proc. 16th ICDERS, Cracow (1997), pp. 168–171.

  16. E. Pantow, M. Fischer, and T. Kratzel, “Detonation front structures in hydrogen combustibles,”ibid., in: Proc. 16th ICDERS, Cracow (1997), pp. 377–380.

  17. E. S. Oran, “Numerical simulations of unsteady combustion,” in:Combustion, Detonation, Shock Waves: Proc. of the Zel'dovich Memorial, Moscow (1994), pp. 228–247.

  18. E. S. Oran, J. W. Weber, E. I. Stefaniw, M. H. Lefebvre, and J. D. Anderson, “A numerical study of a two-dimensional H2−O2−Ar detonation using a detailed chemical reaction model,”Combust. Flame,113, 147–163 (1998).

    Article  Google Scholar 

  19. S. U. Schöffel and F. Ebert, “Numerical analyses concerning the spatial dynamics of an initially plane gaseous ZND detonation,” in:Progress in Astronautics and Aeronautics, Vol. 114:Dynamics of Explosions, Washington (1988), pp. 3–31.

  20. W. Cai, “High-order hybrid numerical simulations of two-dimensional detonation waves,”AIAA J.,33, No. 7, 1248–1255 (1995).

    MATH  ADS  Google Scholar 

  21. B. Sjögreen,Numerical computation of threedimensional detonation waves on parallel computers,” Report No. 162/1994, Department of Scientific Computing, Uppsala University, Uppsala, Sweden (1994).

    Google Scholar 

  22. D. Lindström, “Numerical computation of viscous detonation waves in two space dimensions,” Report No. 178/1996, Department of Scientific Computing, Uppsala University, Uppsala, Sweden (1996).

    Google Scholar 

  23. V. A. Levin and V. P. Korobeinikov, “Strong explosion in a combustible mixture of gases,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 48–51 (1969).

    Google Scholar 

  24. Yu. A. Nikolaev, “Model of the kinetics of chemical reactions at high temperatures,”Fiz. Goreniya Vzryva,14, No. 4, 73–76 (1978).

    Google Scholar 

  25. P. A. Fomin and A. V. Trotsyuk, “Approximate calculation of the isentrope of a gas in chemical equilibrium,”Fiz. Goreniya Vzryva 31, No. 4, 59–62 (1995).

    Google Scholar 

  26. Yu. A. Nikolaev and D. V. Zak, “Agreement of models of chemical reactions in gases with the second law of thermodynamics,”Fiz. Goreniya Vzryva,24, No. 4, 87–90 (1988).

    ADS  Google Scholar 

  27. Yu. B. Rumer and M. Sh. Ryvkin,Thermodynamics, Statistical Physics, and Kinetics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  28. Yu. A. Nikolaev, and P. A. Fomin, “Analysis of equilibrium flows of chemically reacting gases,”Fiz. Goreniya Vzryva,18, No. 1, 66–72 (1982).

    Google Scholar 

  29. Yu. A. Nikolaev and P. A. Fomin, “Approximate equation of kinetics in heterogeneous systems of the gas-condensed-phase type,”Fiz. Goreniya Vzryva,19, No. 6, 49–58 (1983).

    ADS  Google Scholar 

  30. D. R. White, “Density induction times in very lean mixtures of D2, H2, C2H2, and C2H4 with O2,” in:11th Symp. (Int.) on Combustion, Berkeley (1966), pp. 147–154.

  31. S. K. Godunov (ed.),Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  32. S. Yamamoto and H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations,”Computer Fluids,22, Nos. 2/3, 259–270 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Daiguji, X. Yuan, and S. Yamamoto, “Stabilization of higher-order high-resolution schemes for the compressible Navier-Stokes equation,”Int. J. Num. Meth. Heat Fluid Flow,7, Nos. 2/3, 250–274 (1997).

    Article  MATH  Google Scholar 

  34. S. R. Chakravarthy and S. Osher, “A new class of high-accuracy TVD schemes for hyperbolic conservation laws,” in: AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada (1985). (AIAA Paper No. 850363.)

  35. S.-Y. Lin and Y.-S. Chin, “Comparison of higherresolution Euler Schemes for aeroacoustic computations,”AIAA J.,33, No. 2, 237–245 (1995).

    ADS  Google Scholar 

  36. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,”J. Comput. Phys.,43, 357–372 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. P. L. Roe and J. Pike, “Efficient construction and utilization of approximate Riemann Solutions in: R. Glowinski and J.-L. Lions (eds.),Computing Methods in Applied Sciences and Engineering. VI, North-Holland, Amsterdam (1984), pp. 499–513.

    Google Scholar 

  38. B. van Leer, “Flux-vector splitting for the Euler equations,” ICASE Report No. 82-30 (1982). [Lecture Notes in Physics, Vol. 170, Springer-Verlag, Berlin-New York (1982), pp. 507–512].

    Google Scholar 

  39. W. K. Anderson, J. L. Thomas, and B. van Leer, “A comparison of finite volume flux vector splitting for the Euler equations,” in: AIAA 23rd Aerospace Sciences meeting, Reno, Nevada (1985). (AIAA Paper No. 85-0122.)

  40. M. Vinokur and J.-L. Montagné, “Generalized fluxvector splitting and Roe average for an equilibrium real gas,”J. Comput. Phys.,89, 276–300 (1990).

    Article  MATH  ADS  Google Scholar 

  41. M. Vinokur, “An analysis of finite-difference and finite-volume formulations of conservation laws,”J. Comput. Phys.,81, 1–52 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. A. harten and J. M. Hyman, “Self-adjusting grid methods for one-dimensional hyperbolic conservation laws,”J. Comput. Phys.,50, 235–269 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. J. W. Shen and X. Zhong, “Semi-implicit Runge-Kutta schemes for non-autonomous differential equations in reactive flow computations,” AIAA Paper No. 96-1996 (1996).

  44. Yu. A. Nikolaev and M. E. Topchiyan, “Calculation of equilibrium flows in detonation waves in gases,”Fiz. Goreniya Vzyva,13, No. 3, 393–404 (1977).

    ADS  Google Scholar 

  45. R. A. Strehlow and C. D. Engel, “Transverse waves in detonations. II. Structure and spacing in H2−O2, C2H2−O2, C2H4−O2, CH4−O2 systems,”AIAA J.,7, No. 3, 492–496 (1969).

    Article  ADS  Google Scholar 

  46. R. A. Strehlow, “Gas phase detonations: recent developments,”Combust. Flame,12, No. 2, 81–101 (1968).

    Article  Google Scholar 

  47. V. I. Manzhalei, V. V. Mitrofanov, and V. A. Subbotin, “Measurement of inhemogeneities of a detonation front in gas mixtures at elevated pressures,”Fiz. Goreniya Vzryva,10, No. 1, 102–110 (1974).

    Google Scholar 

  48. D. H. Edwards, G. Hooper, E. M. Job, and D. J. Parry, “The behavior of the frontal and transverse shocks in gaseous detonation waves,”Astronaut. Acta,15, No. 5-6, 323–333 (1970).

    Google Scholar 

  49. M. H. Lefebvre, J. W. Weber, and E. S. Oran, “Fluid mechanics and applications,” in: B. Deshaies and L. F. da Silva (eds.),Proc. of the IUTAM Symp., Vol. 39, Kluwer Academic Publ. (1997), pp. 347–358.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromFizika Goreniya i Vzryva, Vol. 35, No. 5, pp. 93–103, September–October 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trotsyuk, A.V. Numerical simulation of the structure of two-dimensional gaseous detonation of an H2-O2-Ar mixture. Combust Explos Shock Waves 35, 549–558 (1999). https://doi.org/10.1007/BF02674500

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674500

Keywords

Navigation