Skip to main content
Log in

Abel-Lidskii bases in the non-self-adjoint inverse boundary problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let M be a manifold with boundary δM≠Ф. Let A be a second-order elliptic partial differential operator given on M. Denote by Rλ(x, y), x, y∈M, λε\(\mathbb{C}\)\σ(A) the Schwartz kernel of (A−λI)−1. Consider the Gel'fand inverse boundary problem of the reconstruction of (M, A) via a given Rλ(x, y), x, y∈δM,λε\(\mathbb{C}\). We prove that if the principal symbol of A satisfies some geometric condition (the Bardos-Lebeau-Rauch condition), then these data determine M uniquely, and they determine A to within the group of generalized gauge transformation on M. The above-mentioned geometric condition means, roughly speaking, that any geodesic (in the metric generated by A) leaves M. Bibliography: 29 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. M. Berezanskii, “The inverse spectral problem for the Schrödinger operator,”Dokl. Akad. Nauk SSSR,105, No. 2, 197–200 (1955).

    MathSciNet  Google Scholar 

  2. A. Nachman, J. Sylvester, and G. Uhlmann, “Ann-dimensional Borg-Levinson theorem,”Commun. Math. Phys.,115, No. 4, 595–605 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. G. Novikov and G. M. Henkin, “A\(\partial \) in the multidimensional inverse scattering problem,”Usp. Mat. Nauk,42, No. 1, 93–152 (1987).

    MathSciNet  Google Scholar 

  4. P. Ola, L. Paivarinta, and E. Somersalo, “Inverse boundary value problems in electrodynamics,”Duke Math. J.,70, No. 3, 563–579 (1993).

    Article  MathSciNet  Google Scholar 

  5. G. Nakamura, Z. Sun, and G. Uhlmann, “Global identifiability for an inverse problem for the Schrödinger operator with magnetic field,”Math. Ann.,303, No. 3, 377–388 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Shiota, “An inverse problem for the wave equation with first-order perturbation,”Am. J. Math.,106, 241–251 (1985).

    Article  MathSciNet  Google Scholar 

  7. M. Lassas, “Nonselfadjoint spectral inverse problems and their applications to random bodies,”Ann. Acad. Sci. Fenn., Dissertations,103 (1995).

  8. Ya. V. Kurylev, “Inverse boundary problems on Riemannian manifolds,”Contemp. Math.,173, 181–192 (1994).

    MathSciNet  Google Scholar 

  9. Ya. V. Kurylev, “An inverse boundary problem for the Schrödinger operator with magnetic field,”J. Math. Phys.,36, No. 6, 2761–2776 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  10. Ya. V. Kurylev, “The multidimensional Gel'fand inverse problem and boundary distance map,” in: H. Soga (ed.),Inverse Problems Related with Geometry, Ibaraki (1997), pp. 1–15.

  11. M. I. Belishev, “On an approach to multidimensional inverse problems for the wave equation,”Dokl. Akad. Nauk SSSR,297, No. 3, 524–527 (1987).

    MathSciNet  Google Scholar 

  12. M. I. Belishev, “Boundary control and wave field continuation,” Preprint LOMI, P-1-90, Leningrad (1990).

  13. M. I. Belishev and Ya. V. Kurylev, “Boundary control, wave field continuation, and inverse problems for the wave equation,”Comp. Math. Appl.,22, Nos. 4–5, 27–52 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  14. I. M. Gel'fand, “Some aspects of functional analysis and algebra,” in:Proceedings of the International Congress of Mathematics,1, Amsterdam (1954), pp. 253–277.

  15. C. Bardos, G. Lebeau and J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,”SIAM J. Control. Opt.,30, No. 5, 1024–1065 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Hörmander,The Analysis of Linear Partial Differential Operators, III, Springer, Berlin-Heidelberg (1995).

    Google Scholar 

  17. M. Taylor,Pseudodifferential Operators, Princeton Univ. Press, Princeton (1981).

    MATH  Google Scholar 

  18. J. L. Lions,Controllabilité de Exacte Perturbations et Stabilisation de Systemes Distribués, Vol. 1, Masson, Paris (1988).

    Google Scholar 

  19. I. Gokhberg and M. Krein,Introduction to the Theory of Linear Non-self-adjoint Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  20. M. S. Birman and M. Z. Solomyak,Spectral Theory of Selfadjoint Operators in a Hilbert Space, Reidel, Dordrecht-Boston (1986).

    Google Scholar 

  21. M. S. Agranovich, “Elliptic operators on closed manifolds,” in:Encyclopedia of Mathematical Sciences, Springer (1997), pp. 1–130.

  22. M. S. Agranovich, “Elliptic boundary problems,” in:Encyclopedia of Mathematical Sciences, Springer (1997), pp. 1–140.

  23. V. B. Lidskii, “The Fourier series expansion in the principal functions of a non-self-adjoint elliptic operator,”Mat. Sb.,57, 137–150 (1962).

    MathSciNet  Google Scholar 

  24. B. Ya. Levin,Distribution of Zeros of Entire Functions, AMS (1964).

  25. D. Tataru, “Unique continuation of solutions to PDE's: between Hörmander's theorem and Holmgren's theorem,”Commun. Part. Diff. Eq.,20, Nos. 5–6, 855–884 (1995).

    MATH  MathSciNet  Google Scholar 

  26. M. I. Belishev and Ya. V. Kurylev, “A nonstationary inverse problem for the multidimensional wave equation ‘in large’,”Zap. Nauchn. Semin. LOMI,165, 21–30 (1987).

    MATH  Google Scholar 

  27. M. I. Belishev and Ya. V. Kurylev, “On the reconstruction of a Riemannian manifold via its spectral data (BC-method),”Commun. Part. Diff. Eq.,17, 767–804 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  28. A.P. Katchalov and Ya. V. Kurylev, “Multidimensional Gel'fand inverse problem with incomplete boundary spectral data,” Preprint No. 1831, TH Darmstadt (1996).

  29. D. Tataru, “Boundary controllability for conservative PDE's,”Appl. Math. Optim.,31, 257–295 (1995).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 250, 1998, pp. 161–190.

Translated by Ya. Kurylev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurylev, Y.V., Lassas, M. Abel-Lidskii bases in the non-self-adjoint inverse boundary problem. J Math Sci 102, 4237–4257 (2000). https://doi.org/10.1007/BF02673855

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673855

Keywords

Navigation