Skip to main content
Log in

An analog of the Stolz Angle for the unit ball in {\(\mathbb{C}^n \)}

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

By a (ρ, c, q)-wedge in the unit ball {\(\mathbb{B}^n \subset \mathbb{C}^n \)} we mean the union of the sets {\(\mathbb{B}_\rho ^n \)} and Ec,q(e0), where {\(\mathbb{B}_\rho ^n = \left\{ {z \in \mathbb{C}^n :\left| z \right| \leqslant \rho } \right\}\)}, 0<ρ<1, |e0|=1, 0<q<1, {\(\rho > 1 - \frac{{\left( {1 - q} \right)^2 }}{{2\left( {1 + c^2 } \right)}}\)}, and {\(E_{c,q} \left( {e_0 } \right) = \left\{ {z \in \mathbb{B}^n :\left| {Im\left( {1 - \left( {z,e_0 } \right)} \right)} \right| \leqslant c{\text{ Re}}\left( {{\text{1 - }}\left( {{\text{z,}}e_0 } \right)} \right);\left| z \right|^2 - \left| {\left( {z,e_0 } \right)} \right|^2 \leqslant q\left( {1 - \left| {\left( {z,e_0 } \right)} \right|^2 } \right)} \right\}\)} (here (z,χ) is the usual scalar product in {\(\mathbb{C}^n \)}). We denote by Ta, {\({\rm T}_a \)}, a≠0, the intersection of {\(\mathbb{B}^n \)} and the hyperplane {z:(z, a)=|a|2}. This paper contains a description of the sets Z of the form {\(\bigcup\limits_{a \in A} { {\rm T}_\alpha } \)}, where A belongs to a finite union of (ρ, c, q)-wedges with 0<q<1/2. These sets may occur as zero-sets or interpolation set for functions belonging to {\(H^\infty \left( {\mathbb{B}^n } \right)\)}. Bibliography: 9 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Khenkin, “The H. Lévy equation and analysis on pseudoconvex manifolds,”Usp. Mat. Nauk,32, 57–118 (1997).

    Google Scholar 

  2. H. Skoda, “Valeurs au bord pour les solutions de l'opérateurd″, et caracterisation des zéros des fonctions de la classe de Nevanlinna,”Bull. Soc. Math. France,104, 225–299 (1976).

    MATH  Google Scholar 

  3. A. B. Aleksandrov, “The Blaschke condition and the zeros of bounded holomorphic functions,” in:Multidimensional Complex Analysis [in Russian], Krasnoyarsk (1985).

  4. M. Hakim and N. Sibony, “Ensemble des zéros d'une fonction holomorphe bornée dans la boule unité,”Math. Ann.,260, 469–474 (1982).

    Article  MATH  Google Scholar 

  5. N. A. Shirokov, Zap. Nauchn. Semin.LOMI,141, 183–187 (1985).

    Google Scholar 

  6. E. Amar, “Extension de fonctions analytiques avec estimation,”Arkiv Mat.,17, 123–138 (1979).

    Article  MATH  Google Scholar 

  7. W. Rudin, Function Theory in the Unit Ball of {\(\mathbb{C}^n \)} Springer-Verlag, New York-Heidelberg-Berlin (1980).

    MATH  Google Scholar 

  8. N. A. Shirokov, “Traces ofH -functions on hyperplanes,”Lect. Notes Math.,1043, 577–578 (1984).

    Google Scholar 

  9. D. J. Newman, “Interpolation inH ,”Trans. Am. Math. Soc.,22, 501–507 (1959).

    Article  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 247, 1997, pp. 276–297.

Translated by S. V. Kislyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirokov, N.A. An analog of the Stolz Angle for the unit ball in {\(\mathbb{C}^n \)}. J Math Sci 101, 3216–3229 (2000). https://doi.org/10.1007/BF02673746

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673746

Keywords

Navigation