Skip to main content
Log in

Invariants of classCk for finite coxeter groups and their representations in terms of anisotropic spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This article is devoted to the study of representations of Ck {\(C^k \left( {\mathbb{R}^n } \right)\)} functions f invariant with respect to finite Coxeter groups W in the form f=F op, where p is a base in the algebra of W-invariant polynomials. We examine the lowering of smoothness of F as compared with f and conclude that this lowering has an anisotropic nature and that, more precisely, at each point Po it is described by a vector {\(\bar \mu \left( {po} \right) \in \mathbb{R}^n \)}. We examine the cases W=An, Bn, Dn, {\(\mathfrak{D}_m \)}; in each case the greatest component {\(\mu _j \)} of {\(\bar \mu \)} is equal to the Coxeter number of the stabilizer Wyo of the point yo, where po=p(yo). Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. H. S. M. Coxeter, “The product of the generators of a finite group generated by reflections,”Duke Math. J.,18, 765–782 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  2. G. S. M. Coxeter and W. O. J. Moser,Generating Elements and Defining Relations for Discrete Groups [Russian translation], Moscow (1980).

  3. N. Bourbaki,Lie Groups and Lie Algebras, Chaps. IV–VI [Russian translation], Moscow (1972).

  4. H. Whitney, “Differentiable even functions,”Duke Math. J.,10, 159–160 (1943).

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Barbançon, “Théorème de Newton pour les fonctions de classeCr,”Ann. Sci. École Norm. Sup. 4-e Serie,5, 435–458 (1972).

    MATH  Google Scholar 

  6. G. Barbançon, “Invariants de classeCr des groupes finis engendres par des reflexions et théorème de Chevalley en classeCr,”Duke Math. J.,53, 563–584 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. O. Gokhman, “Smooth symmetric functions,”Ukr. Mat. Zh.,41, 743–750 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. O. Gokhman, “Representation of differentiable symmetric functions in various bases,”Dokl. Akad. Nauk SSSR,318, 1049–1052 (1991).

    MathSciNet  Google Scholar 

  9. A. O. Gokhman, “On smooth functions invariant with respect to a group generated by reflections,”Mat. Zametki,53, 146–147 (1993).

    MATH  MathSciNet  Google Scholar 

  10. J. M. Ball, “Differentiability properties of symmetric and isotropic functions,”Duke Math. J.,51, 699–728 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. O. Gokhman, “On smoothness lowering in the theorem on differentiable invariants for Coxeter groups,”Funkts. Anal. Prilozh.,28, 82–84 (1994).

    MathSciNet  Google Scholar 

  12. A. O. Gokhman, “Representation of smooth invariants for Coxeter groups in terms of anisotropic spaces,” in:Modern Methods of Nonlinear Analysis, Abstracts, Voronezh (1995), pp. 28–29.

  13. V. I. Arnold, “Hyperbolic polynomials and Vandermonde mappings,”Funkts. Anal. Prilozh.,20, 52–53 (1986).

    Google Scholar 

  14. I. MacDonald,Symmetric Functions and Hall Polynomials [Russian translation], Moscow (1985).

  15. A. O. Gokhman, “On the Newton theorem for smooth functions,” VINITI, No. 8102–84 (1984).

  16. G. Barbançon and M. Raïs, “Sur le théorème de Hilbert différentiable pour les groupes lineaires finis (d'apres E. Noether)”,Ann. Sci. École Norm. Sup. 4-e Serie,16, 355–373 (1983).

    MATH  Google Scholar 

  17. G. Lassalle, “Le théorème de préparation différentiable en classep,”Ann. Inst. Fourier Grenoble,23, 97–108 (1973).

    MATH  MathSciNet  Google Scholar 

  18. G. Lassalle, “Une démonstration du théorème de division pour les fonctions différentiables,”Topology,12, 41–62 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Bierstone, “Differentiable functions,”Bol. Soc. Brazil. Mat.,11, 139–189 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. O. Gokhman, “On a division theorem for differentiable functions,”Usp. Mat. Nauk,41, 191–192 (1986).

    MathSciNet  Google Scholar 

  21. V. I. Bakhtin, “The Weierstrass-Malgrange preparation theorem for the case of finite smoothness,”Funkts. Anal. Prilozh.,24, 3–16 (1990).

    MathSciNet  Google Scholar 

  22. V. I. Bakhtin, “Weierstrass preparation theorem for finitely smooth modules,” in:Theory of Singularities and Its Applications, Providence, Rhode Island (1990), pp. 287–294.

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 247, 1997, pp. 46–70.

Translated by S. Yu. Pilyugin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhman, A.O. Invariants of classCk for finite coxeter groups and their representations in terms of anisotropic spaces. J Math Sci 101, 3073–3087 (2000). https://doi.org/10.1007/BF02673732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673732

Keywords

Navigation