Skip to main content
Log in

The formation of elevated barrier height Schottky diodes to inp and In0.53Ga0.47as using thin, excimer laser-deposited Cd interlayers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Much recent attention has been paid to elevating the barrier height of contacts to InP and In0.53Ga0. 47As via the formation of a thin, intermediate layer between the semicon-ductor and a conventionally deposited, highly conductive contact layer. Here, we report on the use of thin (∼200Å) excimer laser photodeposited Cd as an interlayer between these semiconductors and Au overlayers in order to raise the barrier height of the re-sulting diodes. Current-voltage measurements of ideal Schottky diodes fabricated using this process yield barrier heights of 0.70 eV and 0.55 eV to InP and In0.53Ga0. 47As, re-spectively. The photodeposition process has been integrated with conventional clean room processing resulting in Au/Cd/In0.53Ga0. 47As transistors with high transconductances (∼200 mS/mm) and operating frequencies (f max ∼ 30 GHz). X-ray photoelectron spec-troscopy of thin Cd photodeposits on InP shows that the process produces an interfacial (∼10Å thick) Cd-InP reaction zone covered by metallic Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Newman, T. Kendelewicz, L. Bowman and W. E. Spicer, Appl. Phys. Lett.46, 1176 (1985).

    Article  CAS  Google Scholar 

  2. T. Y. Chang, R. F. Leheny, R. E. Nahory, E. Silberg, A. A. Ballman, E. A. Caridi and C. J. Harrold, IEEE Electron Device Lett.EDL-3, 56 (1982).

    CAS  Google Scholar 

  3. K. Steiner, U. Seiler and K. Heime, Appl. Phys. Lett.53, 2513 (1988).

    Article  CAS  Google Scholar 

  4. O. Wada and A. Majerfeld, Electron. Lett.14, 125 (1978).

    Article  CAS  Google Scholar 

  5. S. Loualiche, H. L’Haridon, A. Le Corre, D. Lecrosnier, M. Salvi and P. N. Favennec, Appl. Phys. Lett.52, 540 (1988).

    Article  CAS  Google Scholar 

  6. S. Loualiche, A. Ginoudi, H. L’Haridon, M. Salvi, A. Le Corre, D. Lecrosnier and P. N. Favennec, Appl. Phys. Lett.54, 1238 (1989).

    Article  CAS  Google Scholar 

  7. Y. S. Lee and W. A. Anderson, J. Appl. Phys.65, 4051 (1989).

    Article  CAS  Google Scholar 

  8. H. Morkoc, T. J. Drummond and C. M. Stanchak, IEEE Trans. Electron. Dev.ED-28, 1 (1981).

    CAS  Google Scholar 

  9. D. V. Morgan and J. Frey, Electron. Lett.14, 737 (1978).

    Article  CAS  Google Scholar 

  10. P. D. Gardner, S. G. Liu, S. Y. Narayan, S. D. Colvin, J. P. Paczkowski and D. R. Capewell, IEEE Electron. Device Lett.EDL-7, 363 (1986).

    CAS  Google Scholar 

  11. K. Hirose, K. Ohata, T. Mizutani, T. Itoh and M. Ogawa, Gallium Arsenide and Related Compounds 1985, (Adam Hilger Ltd., Bristol, 1985), pp. 529–534.

    Google Scholar 

  12. C. K. Peng, M. I. Aksun, A. A. Ketterson, H. Morkoc and K. R Gleason, IEEE Electron. Device Lett.EDL-8, 24 (1987).

    CAS  Google Scholar 

  13. C J Sa and L. G. Meiners, Appl. Phys. Lett.48,1796 (1986).

    Article  CAS  Google Scholar 

  14. L. G. Meiners, A. R. Clawson and R. Nguyen, Appl. Phys Lett.49, 340 (1986).

    Article  CAS  Google Scholar 

  15. W. K. Chan, H. M. Cox, J. H. Abeles, S. P. Kelty, Electron. Lett.23, 1346 (1987).

    Article  Google Scholar 

  16. W. K. Chan, G. Chang, R. Bhat and N. E. Schlotter, IEEE Electron. Device Lett.EDL-9, 220 (1988).

    Article  Google Scholar 

  17. H. H. Gilgen, C. J. Chen, R. Krchnavek, R. M. Osgood, Jr., in Laser Diagnostics and Photochemical Processing, ed. D. Bauerle, (Springer, New York, 1985), pp. 225–233.

    Google Scholar 

  18. C. J. Chen and R. M. Osgood, Jr., Appl. Phys.A31, 172 (1983).

    Google Scholar 

  19. P. S. Shaw, Ph.D. dissertation, (Columbia University, New York, 1989).

  20. M. I. Gallant and H. M.van Driel, Phys. Rev. B26, 2133 (1982).

    Google Scholar 

  21. Semiconductors and Semimetals Vol. 3, eds. R. K. Willardson and A. C. Beer, (Academic, New York, 1966), p. 125.

  22. Thermophysical Properties of Matter, The TPRC Data Series, Vol. 5, eds. Y. S. Touloukian and E. M. Buyco, (Plenum, New York, 1970), p. 523.

  23. M. Neuberger, Handbook of Electronic Materials, Vol. 2: IIIV Semiconducting Compounds, (IFI/Plenum, New York, 1971), p. 111.

    Google Scholar 

  24. M. Neuberger, Handbook of Electronic Materials, Vol. 7: IIIV Ternary Semiconducting Compounds—Data Tables, (IFI/ Plenum, New York, 1972), p. 37.

    Google Scholar 

  25. O. J. Glembocki and H. Piller, Handbook of Optical Constants of Solids, Academic Press Handbook Series, ed. E. D. Palik, (Academic, New York, 1985), pp. 503–516.

    Google Scholar 

  26. Thermophysical Properties of Matter, The TPRC Data Series, Vol. 8, eds. Y. S. Touloukian and D. P. Dewitt, (Plenum, New York, 1972), p. 679, 687, 1100.

  27. C. Kittel and H. Kroemer, Thermal Physics, (Freeman, New York, 1980), p. 427.

    Google Scholar 

  28. D. E. Aspnes and A. A. Studna, Appl. Phys. Lett.39, 316 (1981).

    Article  CAS  Google Scholar 

  29. K. Kajiyama, Y. Mizushima and S. Sakata, Appl. Phys. Lett.23, 458 (1973).

    Article  CAS  Google Scholar 

  30. M. P. Seah and W. A. Dench, Surf, and Int. Anal.1, 2 (1979).

    Article  CAS  Google Scholar 

  31. C. D. Stinespring and A. Freedman, Chem. Phys. Lett.143, 584 (1988).

    Article  CAS  Google Scholar 

  32. G. Haacke and G. A. Castellion, J. Appl. Phys.35, 2484 (1964).

    Article  CAS  Google Scholar 

  33. W. Zdanowicz and A. Wojakowski, Phys. Status Solidi8, 569 (1965).

    Article  CAS  Google Scholar 

  34. W. Zdanowicz and A. Wojakowski, Phys. Status Solidi10, K93 (1965).

    Article  Google Scholar 

  35. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, The NBS Tables of Chemical and Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units, Journal of Physical and Chemical Reference Data11, Supplement No. 2, ed. David R. Lide, Jr., (A.I.P., New York, 1982), pp. 2–148, 2–134.

    Google Scholar 

  36. E. A. Fagen, J. Appl. Phys.50, 6505 (1979).

    Article  CAS  Google Scholar 

  37. Z. Januskevicius, N. Korech, A. Sakalas and I. Tychina, Phys. Status Solidi65, K149 (1981).

    Article  CAS  Google Scholar 

  38. V. S. Vavilov, V. S. Koval, P. A. Romanyk, N. V. Stuchinskaya, K. Khakimov, G. P. Chuiko and M. V. Chukichev, Sov. Phys. Semicond.21, 621 (1987).

    Google Scholar 

  39. A. Yu. Kamertsel’, G. A. Kudintseva, I. G. Stamov and N. N. Syrbu, Sov. Phys. Semicond.19, 16 (1985).

    Google Scholar 

  40. W. J. Turner, A. S. Fischler and W. E. Reese, J. Appl. Phys. Suppl.32, 2241 (1961).

    Article  Google Scholar 

  41. E. Burstein, Phys. Rev.93, 652 (1954).

    Google Scholar 

  42. T. S. Moff, Proc. Phys. Soc.B76, 775 (1954).

    Google Scholar 

  43. W. J. Turner, A. S. Fischler and W. E. Reese, Phys. Rev.121, 759 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licata, T.J., Schmidt, M.T., Podlesnik, D.V. et al. The formation of elevated barrier height Schottky diodes to inp and In0.53Ga0.47as using thin, excimer laser-deposited Cd interlayers. J. Electron. Mater. 19, 1239–1246 (1990). https://doi.org/10.1007/BF02673338

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673338

Key words

Navigation