Advertisement

Atomic Energy

, Volume 87, Issue 1, pp 480–484 | Cite as

Effect of the composition of radiation on the radiation damage to graphite

  • V. A. Nikolaenko
  • V. I. Karpukhin
  • V. N. Kuznetsov
  • P. A. Platonov
  • V. M. Alekseev
  • O. K. Chugunov
  • Ya. I. Shtrombakh
  • V. D. Baldin
  • B. S. Rodchenkov
  • Yu. I. Smirnov
  • A. V. Subbotin
  • Yu. É. Khandomirov
  • I. G. Lebedev
Articles

Abstract

A statistical analysis is performed of the results on the determination of the critical neutron fluence in MR, SM-2, and BOR-60 with different irradiation temperature. It is shown that the critical neutron fluence depends not only on the irradiation temperature but also, and to an even greater extent, on the radiation composition factor (ratio of the neutron and γ-ray flux densities). Thus the critical neutron fluence for irradiation at 600°C in MR (radiation composition factor 0.13) is 17·1021 cm−2 and in SM-2 (radiation composition factor 0.1) 11·1021 cm−2 at the same temperature. When the same graphite is irradiated in the region of the outer corner of a working block of RBMK, where the radiation composition factor is 0.55, it is expected that the critical neutron fluence will be 31.7·1021 cm−2.

In summary, taking account of the effect of γ-radiation introduces substantial corrections: the experimental results obtained in research reactors are found to be at least a factor of 2 too low. This gives hope of substantiating the substantial increase in the service life of the RBMK graphite masonry. 3 figures, 8 references.

Keywords

Flux Density Irradiation Temperature Research Reactor Neutron Fluence Spectator Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Standards for strength calculation of typical units and parts made of graphite for uranium-graphite channel reactors,”NGR-01-90, Moscow (1990).Google Scholar
  2. 2.
    L. Valette, “Correlation of fast neutron damage for HTGR core material.,” in:Proceedings of the Symposium on Radiation Damage in Reactor Materials, Vol. 2, Vienna, June 2–6, 1969, IAEA, Vienna, pp. 97–113.Google Scholar
  3. 3.
    V. I. Karpukhin and O. K. Chugunov, “Effect of reactor γ rays on radiation annealing of defects,”Preprint IAÉ-1649 (1968).Google Scholar
  4. 4.
    V. A. Nikolaenko, V. G. Gordeev, and V. I. Karpukhin, “Effect of γ-irradiation on defect annealing in diamond,”Rad. Effects,139, 173–182 (1996).CrossRefGoogle Scholar
  5. 5.
    V. A. Nikolaenko and V. I. Karpukhin, “Radiation annealing by electrons in γ rays of neutron-irradiated diamond,”At. Énerg.,79, No. 3, 194–197 (1995).Google Scholar
  6. 6.
    V. A. Nikolaenko, V. I. Karpukhin, and V. G. Gordeev, “Effect of γ rays on crystalline materials accompanying irradiation in reactor,”ibid.,77, No. 3, 186–189 (1994).Google Scholar
  7. 7.
    V. A. Nikolaneko, V. I. Karpukhin, E. A. Krasikov, et al., “γ-radiation as one of the main factors of the effect of reactor irradiation on the properties of metals,”Izv. Ross. Akad. Nauk, Ser. Metally,2, 112–117 (1998).Google Scholar
  8. 8.
    G. A. Seber,Linear Regression Analysis [Russian translation], Mir, Moscow.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. A. Nikolaenko
    • 1
  • V. I. Karpukhin
    • 1
  • V. N. Kuznetsov
    • 1
  • P. A. Platonov
    • 1
  • V. M. Alekseev
    • 1
  • O. K. Chugunov
    • 1
  • Ya. I. Shtrombakh
    • 1
  • V. D. Baldin
  • B. S. Rodchenkov
  • Yu. I. Smirnov
  • A. V. Subbotin
  • Yu. É. Khandomirov
  • I. G. Lebedev
  1. 1.Russian Science Center “Kurchatov Institute”Russia

Personalised recommendations