Skip to main content
Log in

Dislocation configurations developed during carburization of nickel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Dislocation configurations are shown to develop in nickel single crystals as a result of diffusion of carbon from a vapor source. Since carbon is dissolved interstitially in nickel, the presence of such dislocation configurations demonstrates that lattice parameter changes suffice for generating dislocation arrays and that the vacancy requirements involved in diffusion of substitutionally dissolved atoms are nonessential. In particular, carbon was diffused for 30 min at 1000°C into the (111) surfaces of thick nickel crystals, and the resulting dislocation arrangements in the diffusion zone were examined by etch pitting (111) sections. The dislocation density increases from the “grown-in” 1.5 x 106 per cm2 so that in some regions near that surface it is about 107 per cm2. At least half of all the dislocations appear to be arrayed in subgrain boundaries in these sections. The dislocation density decreases towards the interior until at about 3.5√Dte (√Dt e= 210 μm) it approximates the “grown-in” dislocation density, but even at distances exceeding 0.7√Dte there still exist locally high density regions. These have a regular geometry in which dislocations appear to be on (•111), (1•11) or (11•1) slip planes. The subgrain size is 36 μm near the as-diffused surface and increases, until at 3.5√Dte, it is 160 μm, which is the average subgrain size in the undiffused crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. for example: E. Levine, J. Washburn, and G. Thomas:J. Appl. Phys., 1967, vol. 38, pp. 81–87 and 88-95; S. Prussin:J. Appl. Phys., 1961, vol. 32, pp. 1876-81 ; J. W. Matthews, S. Modes, and T. B. Light:J. Appl. Phys., 1970, vol. 41, pp. 3800-04.

    Article  CAS  ADS  Google Scholar 

  2. V. Y. Doo and R. W. Balluffi:Acta Met, 1958, vol. 6, pp. 428–38.

    Article  CAS  Google Scholar 

  3. P. S. Ayres and P. G. Winchell:J. Appl. Phys., 1968, vol. 39, pp. 4820–23; andJ. Appl. Phys., 1972, vol. 43, pp. 816-20.

    Article  CAS  ADS  Google Scholar 

  4. P. G. Winchell, John Boah, and P. S. Ayres:J Appl. Phys., 1971, vol. 42, pp. 2612–18.

    Article  CAS  ADS  Google Scholar 

  5. J. K. Boah:Met. Trans., 1973, vol. 4, pp. 1432–33.

    Article  CAS  Google Scholar 

  6. L. S. Darken and R. W. Gurry:Physical Chemistry of Metals, p. 443, McGraw-Hill, New York, 1953.

    Google Scholar 

  7. R. P. Smith:Trans. TMS-AIME, 1966, vol. 236, pp. 1224–27.

    CAS  Google Scholar 

  8. Jun-ichi Echigoya, Shigeyuki Hayashi, and Mikio Yamamoto:Jap. J. Appl. Phys., 1969, vol. 8, p. 964.

    Article  CAS  ADS  Google Scholar 

  9. J. K. Boah and P. G. Winchell:J. Appl. Phys., 1974, vol. 45, pp. 1476–77.

    Article  CAS  ADS  Google Scholar 

  10. C. S. Barrett:Structure of Metals, 1st ed., p. 587, McGraw-Hill, New York, 1948.

    Google Scholar 

  11. J. Weertman and J. R. Weertman:Physical Metallurgy, 2nd ed., R. W. Cahn, ed., p. 924, North Holland Publishing Co., London, 1970.

    Google Scholar 

  12. K. Hirano, R. P. Agarwala, B. L. Averbach, and M. Cohen:J. Appl. Phys., 1962, vol. 33, pp. 3049–54.

    Article  CAS  ADS  Google Scholar 

  13. J. M. Blakely and H. Mykura:Acta Met., 1961, vol. 9, pp. 23–31.

    Article  CAS  Google Scholar 

  14. C. J. Smithells:Metals Reference Book, vol. 2, 3rd ed., p. 614, Butterworths, London,1962.

    Google Scholar 

  15. L. Zwell, E. J. Fasiska, and A. S. Keh:Trans. TMS-AIME, 1968, vol. 242, pp. 765–66.

    CAS  Google Scholar 

  16. P. Haasen:Phil. Mag., 1958, vol. 3, pp. 384–418.

    Article  CAS  ADS  Google Scholar 

  17. Landolt-Bornstein Tables, New Series III/1, p. 22, Springer-Verlag, New York, 1966.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boah, J.K., Winchell, P.G. Dislocation configurations developed during carburization of nickel. Metall Trans A 6, 717–724 (1975). https://doi.org/10.1007/BF02672291

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672291

Keywords

Navigation