Skip to main content

The venttse’ problem for nonlinear elliptic equations

Abstract

The solvability of the fully nonlinear stationary Venttsel' problem is established. The equation and the boundary condition are assumed to be uniformly elliptic. Bibliography: 12 titles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. E. Apushkinskaya and A. I. Nazarov, “A survey of results on nonlinea Venttsel' problems”,Appl. Math., to appear.

  2. 2.

    D. E. Apushkinsakaya and A. I. Nazarov, “On the quasilinear stationary Venttsel' problem,”Zap. Nauchn. Semin. POMI,221, 20–29 (1995).

    Google Scholar 

  3. 3.

    D. E. Apushkinsakaya and A. I. Nazarov, “Estimates for the gradient of solutions to stationary degenerate Venttsel' problems,”J. Math. Sci.,98, No. 6, 654–673 (2000).

    Article  Google Scholar 

  4. 4.

    N. S. Trudinger, “Fully nonlinear, uniformly elliptic equations under natural structure conditions,”Trans. Amer. Math. Soc.,278, 751–769 (1983).

    MATH  Article  Google Scholar 

  5. 5.

    G. M. Lieberman and N. S. Trudinger, “Nonlinear oblique bondary-value problems for nonlinear elliptic equations,”Trans. Amer. Math. Soc.,295, 509–546 (1986).

    MATH  Article  Google Scholar 

  6. 6.

    D. E. Apushkinsakaya and A. I. Nazarov, “Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergence form with Wentzel (Venttsel') boundary condition”,Amer. Math. Soc. Transl. Ser. II.,164, 1–13 (1995).

    Google Scholar 

  7. 7.

    O. A. Ladyzhenskaya and N. N. Ural'tseva,Linear and Quasilinear Elliptic Equations [in Russian], Nauka, Moscow (1973). [English Translation of the 1st ed,:Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968)].

    Google Scholar 

  8. 8.

    D. E. Apushkinskaya and A. I. Nazarov, “The initial-boundary value problem for nondivergence parabolic equations with Venttsel' boundary condition,”St. Petersburg Math. J.,6, No. 6, 1127–1149 (1995).

    Google Scholar 

  9. 9.

    G. M. Lieberman, “The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data,”Commun. Partial Differ. Equations,11, No. 2, 167–229 (1986).

    MATH  Article  Google Scholar 

  10. 10.

    D. E. Apushkinskaya and A. I. Nazarov, “Boundary estimates for the first-order derivatives of a solution to a nondivergence parabolic equation with composite right-hand side and coefficients of lower-order derivatives,”J. Math. Sci.,77, No. 4, 3257–3276 (1995).

    MATH  Article  Google Scholar 

  11. 11.

    O. V. Besov, V. P. Il'in, and S. M. Nikol'skii,Integral Represntations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1996). [English Translation of the 1st ed.:Integral Representations of Functions and Embedding Theorems, Vol. I–II, Wiley, New York (1978, 1979).]

    Google Scholar 

  12. 12.

    D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983).

    MATH  Google Scholar 

Download references

Authors

Additional information

Translated fromProblemy Matematicheskogo Analiza, No. 19, 1999, pp. 3–26.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Apushkinskaya, D.E., Nazarov, A.I. The venttse’ problem for nonlinear elliptic equations. J Math Sci 101, 2861–2880 (2000). https://doi.org/10.1007/BF02672175

Download citation

Keywords

  • Elliptic Equation
  • Nonlinear Elliptic Equation
  • Quasilinear Elliptic Equation
  • Require Estimate
  • Boundary Estimate