Skip to main content
Log in

Simple (−1,1)-superalgebras

  • Published:
Algebra and Logic Aims and scope

Abstract

We give a description of simple nonassociative (−1,1)-superalgebras of characteristic ≠ 2, 3. It is proved that in such a superalgebra B, the even part A is a differentially simple, associative, and commutative algebra and the odd part M is a finitely generated, associative, and commutative A-bimodule, which is a projective A-module of rank 1. Multiplication in M is uniquely defined by a fixed finite, set of derivations and by elements of A. If, in addition, the bimodule M is one-generated, that is, M=Am for a suitable m∈M, then B is isomorphic to a twisted superalgebra of vector type B(Γ,D,γ). The condition M=Am is met, for instance, if A is local or isomorphic to a polynomial algebra. In particular, if B has a positive characteristic, which is the only possibility in the finite-dimensional case, then A is local and B is isomorphic to B(Γ,D,γ). In the general case, the question of whether the A-bimodule M is one-generated remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. hentzel, “Nil semi-simple (−1, 1) rings,”J. Alg.,22, No. 3, 442–450 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. V. Pchelintsev, “Prime algebras and nonzero trivial elements,”Izv. Akad. Nauk SSSR, Ser. Mat.,50, No. 1, 79–100 (1986).

    MATH  MathSciNet  Google Scholar 

  3. Yu. A. Medvedev and E. I. Zelmanov, “Some counterexamples in the theory of Jordan algebras,” inNonassociative Algebraic Models, S. Gonzales and H. C. Myung (eds.), Nova Science, New York (1992), pp. 1–16.

    Google Scholar 

  4. I. P. Shestakov, “Superalgebras and counterexamples,”Sib. Mat. Zh.,32, No. 6, 187–196 (1991).

    MATH  MathSciNet  Google Scholar 

  5. I. P. Shestakov, “Superalgebras as a building material for constructing counter examples,” inHadronic Mechanics and Nonpotentional Interactions, H. C. Myung (ed.), Nova Science, New York (1992), pp. 53–64.

    Google Scholar 

  6. I. P. Shestakov, “Prime alternative superalgebras of arbitrary characteristics,”Algebra Logika,36, No. 6, 675–716 (1997).

    MATH  MathSciNet  Google Scholar 

  7. E. I. Zelmanov and I. P. Shestakov, “Prime alternative superalgebras and nilpotence of the radical of a free alternative algebra,”Izv. Akad. Nauk SSSR, Ser. Mat.,54, No. 4, 676–693 (1990).

    Google Scholar 

  8. E. Kleinfeld, “Right alternative rings,”Proc. Am. Math. Soc.,4, No. 6, 939–944 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  9. K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov,Rings Close to Associative Rings [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  10. R. E. Roomeldi, “Centers of the free (−1,1)-algebras,”Sib. Mat. Zh.,18, No. 4, 861–876 (1977).

    MathSciNet  Google Scholar 

  11. K. A. Zhevlakov and I. P. Shestakov, “On a local finiteness in the sense of Shirshov,”Algebra Logika,12, No. 1, 41–73 (1973).

    Google Scholar 

  12. E. C. Posner, “Differentiably simple rings,”Proc. Am. Math. Soc.,11, No. 3(1), 337–343 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  13. Shuen Yuan, “Differentiably simple rings of prime characteristic,”Duke Math. J.,31, No. 4, 623–630 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Block, “Determination of the differentiably simple rings with a minimal ideal,”Ann. Math.,90, No. 3, 433–459 (1969).

    Article  MathSciNet  Google Scholar 

  15. S. Lang,Algebra, Addison-Wesley, Reading, Mass. (1963)

    Google Scholar 

  16. N. Bourbaki,Commutative Algebra, Hermann, Paris (1972).

    MATH  Google Scholar 

  17. A. A. Suslin, “The structure of a special linear group over a polynomial ring,”Izv. Akad. Nauk SSSR,41, No. 2, 235–252 (1977).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Supported by RFFR grant No. 96-01-01511.

Translated fromAlgebra i Logika, Vol. 37, No. 6, pp. 721–739, November–December, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestakov, I.P. Simple (−1,1)-superalgebras. Algebr Logic 37, 411–422 (1998). https://doi.org/10.1007/BF02671695

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671695

Keywords

Navigation