Skip to main content
Log in

A class of formal languages

  • Published:
Algebra and Logic Aims and scope

Abstract

We deal with languages that are classes of fully invariant congruences on free semigroups of finite rank. The question is posed as to whether a given fully invariant congruence coincides with a syntactic congruence of the language in question. If all classes of a given fully invariant congruence are rational languages, the corresponding variety is then said to be rational. A number of properties of rational varieties is established—in particular, we point to the way in which they are related to finite varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lallement,Semigroups and Combinatorial Applications, Wiley, New York (1979).

    MATH  Google Scholar 

  2. A. De Luca and S. Varricchio, “On non-counting regular classes,”Theor. Comp. Sc.,100, 67–104 (1992).

    Article  MATH  Google Scholar 

  3. J. McCammond, “The solution to the word problem for the relatively free semigroups satisfyingT a=Ta+b witha≥6,”Int. J. Alg. Comp.,1, No. 1, 1–32 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  4. V. S. Guba, “The word problem for the relatively free semigroups satisfyingT m=Tm+n withm≥4 orm=3,n=1,”Int. J. Alg. Comp.,3, No. 2, 125–140 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  5. V. S. Guba, “The word problem for the relatively free semigroups satisfyingT m=Tm+n withm≥3,”Int. J. Alg. Comp.,3, No. 3, 335–348 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. P. Do Lago, “On the Burnside semigroupsx n=xn+m,”Int. J. Algebra Comp.,6, No. 2, 179–228 (1996).

    Article  MATH  Google Scholar 

  7. E. V. Sukhanov and A. M. Shur, “Equational languages,”Proc. Int. Conference Math. Logic, MIOO NGU, Novosibirsk (1994), pp. 96–98.

    Google Scholar 

  8. L. N. Shevrin and M. V. Volkov, “Identities of semigroups,”Izv. Vyssh. Uch. Zav., Ser. Mat., No. 11, 3–47 (1985).

    MathSciNet  Google Scholar 

  9. L. N. Shevrin and E. V. Sukhanov, “Structural aspects of the theory of varieties of semigroups,”Izv. Vyssh. Uch. Zav., Ser. Mat., No. 6, 3–39 (1989).

    MathSciNet  Google Scholar 

  10. A. M. Shur, “Binary words avoided by the Thue-Morse sequence,”Semigroup Forum,53, No. 2, 212–219 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. W. H. Gottschalk and G. A. Hedlund, “A characterization of the Morse minimal set,”Proc. Am. Math. Soc.,15, 70–74 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. V. Sapir and E. V. Sukhanov, “Varieties of periodic semigroups,”Izv. Vyssh. Uch. Zav., Ser. Mat., No. 4, 40–55 (1981).

    Google Scholar 

  13. A. V. Tischenko and M. V. Volkov, “A characterization of varieties of semigroups of finite index in terms of ‘forbidden divisors’,”Izv. Vyssh. Uch. Zav., Ser. Mat., No. 1, 91–99 (1995).

    Google Scholar 

  14. D. R. Bean, A. Ehrenfeucht, and G. McNulty, “Avoidable patterns in strings of symbols,”Pac. J. Math.,85, No. 2, 261–294 (1979).

    MATH  MathSciNet  Google Scholar 

  15. L. N. Shevrin, “Locally finite semigroups,”Dokl. Akad. Nauk SSSR,162, No. 4, 770–773 (1965).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromAlgebra i Logika, Vol. 37, No. 4, pp. 478–492, July–August, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanov, E.V., Shur, A.M. A class of formal languages. Algebr Logic 37, 270–277 (1998). https://doi.org/10.1007/BF02671630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671630

Keywords

Navigation