Skip to main content

Convergence of algorithms for finding eigenvectors

Abstract

In this paper we give a rigorous analysis of convergence of algorithms for finding eigenvectors of a real symmetric matrix. The algorithms are deterministics and our methods are very intuitive.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, London, 1965

    MATH  Google Scholar 

  2. 2

    A.R. Gourlay, G.A. Watson. Computational Methods for Matrix Eigenproblems. John Wiley & Sons, Inc., New York, 1973.

    Google Scholar 

  3. 3

    Z.H. Cao, Matrix Eigenproblems. Shanghai Science and Technology Press, Shaughai, 1980 (in Chinese)

    Google Scholar 

  4. 4

    B.N. Parlett. The Symmetric Eigenvalue Problem. Printice Hall, New York, 1980.

    MATH  Google Scholar 

  5. 5

    E. Oja. Subspace Methods of Pattern Recognition, Research Studies Press Ltd., Letchworth., Hertfordshire, 1983.

    Google Scholar 

  6. 6

    J.H. Zhang, H.F. Chen. Convergence of Algorithms Used for Principal Component Analysis.Science in China (Series E), 1997, 40(6): 597–604

    MATH  Article  MathSciNet  Google Scholar 

  7. 7

    W. Rudin. Real and Complex Analysis. 2nd edition, McGraw-Hill, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Junhua, Z. Convergence of algorithms for finding eigenvectors. Acta Mathematicae Applicatae Sinica 16, 355–361 (2000). https://doi.org/10.1007/BF02671124

Download citation

Key words

  • Eigenvectors
  • algorithms
  • convergence