Skip to main content
Log in

Characterization and analysis of low-temperature superplasticity in 8090 Al-Li alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The 8090 Al-Li alloys, after a special thermomechanical process (TMP), exhibited low-temperature superplasticity (LTSP) from 350 °C to 450 °C and behaved differently from the conventional high-temperature superplasticity (HTSP). The LTSP sheets after ~700 pct elongation at 350 °C and 8 × 10−4 s−1 still possessed fine “(sub)grains” 3.7 μm in size and narrow surface Li-depletion zones 11 μm in width, resulting in a post-SP T6 strength of ~500 MPa, significantly higher than that of the 8090 alloys tested at normal superplastic temperature of 525 °C or above. Examination from the movement of surface marker lines in LTSP samples confirmed the role of grain boundary sliding (GBS), coupled with grain rotation and migration. During the initial stage (<150 pct), GBS along certain higher-angled boundaries was proceeded along a plane ±45 deg with respect to the sample surface. With increasing straining, sliding between individual grains or grain groups was observed on other planes, forming a zigzag morphology. Transmission electron microscopy (TEM) observations revealed appreciable dislocation activities, suggesting the involvement of dislocation creep. The tensile behavior and deformation mechanisms of the HTSP and LTSP sheets were investigated and analyzed over the strain rates range 10−5 to 10−2 s−1. The strain-rate sensitivity(m value) for the LTSP and HTSP materials was found to be ~0.33 and 0.50, respectively. The activation energy was extracted to be 92 kJ/mole for the LTSP sheets and to be 141 kJ/mole for the HTSP sheets. Based upon these results, the primary deformation and accommodation mechanisms for the HTSP and LTSP sheets are GBS and dislocation creep, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wadsworth, I.G. Palmer, and D.D. Crooks:Scripta Metall., 1983, vol. 17, pp. 347–52.

    Article  Google Scholar 

  2. J. Wadsworth, A.R. Pelton, and R.E. Lewis:Metall. Trans. A, 1985, vol. 16A, pp. 2319–32.

    CAS  Google Scholar 

  3. A.H. Chokshi and A.K. Mukherjee:Mater. Sci. Eng. A, 1989, vol. Al 10, pp. 49–60.

    Google Scholar 

  4. J.M. Papazian, G.G. Bott, and P. Shaw:Mater. Sci. Eng., 1987, vol. 94, pp. 219–24.

    Article  CAS  Google Scholar 

  5. S.J. Hales and T.R. McNelley: inSuperplasticity in Aerospace, H.C. Heikkenen and T.R. McNelley, eds., TMS-AIME, Warrendale, PA, 1988, pp. 61–76.

    Google Scholar 

  6. T.R. McNelley, E.-W. Lee, and M.E. Mills:Metall. Trans. A, 1986, vol. 17A, pp. 1035–41.

    CAS  Google Scholar 

  7. H.-P. Pu and J.C. Huang:Scripta Metall. Mater., 1993, vol. 28, pp. 1125–30.

    Article  CAS  Google Scholar 

  8. R. Grimes, W.S. Miller, and R.G. Butler:J. Phys. Colloq., 1987, vol. C3, pp. 239–44.

    Google Scholar 

  9. R. Amichi and N. Ridley: inAluminum-Lithium V, T.H. Sanders and E.A. Starke, eds., MCEP, Birmingham, England, 1989, pp. 159–67.

    Google Scholar 

  10. H.P. Pu, S.H. Yen, J.C. Huang, and P.W. Kao: inSuperplasticity in Advanced Materials, S. Hori, M. Tokizane, and N. Furushiro, eds., JSRS, Osaka, 1991, pp. 429–34.

    Google Scholar 

  11. A.J. Shakesheff, D.S. McDarmaid, and P.J. Gregson:Mater. Sci. Technol., 1991, vol. 7, pp. 276–81.

    CAS  Google Scholar 

  12. R.A. Ricks and P.-J. Winkler: inAluminium-Lithium VI, M. Peters and P.-J. Winkler, eds., DGM, Germany, 1992, pp. 1035–46.

    Google Scholar 

  13. T.G. Langdon:Metall. Trans., 1972, vol. 3, pp. 797–801.

    Article  CAS  Google Scholar 

  14. P. Shariat, R.B. Vastava, and T.G. Langdon:Acta Metall., 1982, vol. 30, pp. 285–96.

    Article  CAS  Google Scholar 

  15. J.M. Papazian, R.L. Schulte, and P.N. Adler:Metall. Trans. A, 1986, vol. 17A, pp. 635–43.

    CAS  Google Scholar 

  16. J.C. Huang: Ph.D. Dissertation, University of California, Los Angeles, CA, 1986.

    Google Scholar 

  17. V.V. Astanin, O.A. Kaibyshev, and S.N. Faizova:Scripta Metall. Mater., 1991, vol. 25, pp. 2663–68.

    Article  CAS  Google Scholar 

  18. G. Simmons and H. Wang:Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  19. H.J. Frost and M.F. Ashby:Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982.

    Google Scholar 

  20. A. Arieli and A.K. Mukherjee:Metall. Trans. A, 1982, vol. 13A, pp. 717–32.

    Google Scholar 

  21. H.W. Hayden, S. Floreen, and P.D. Goodell:Metall. Trans., 1972, vol. 3, pp. 833–42.

    Article  CAS  Google Scholar 

  22. J. Cadek:Creep in Metallic Materials, Elsevier Science Publishing Co. Inc., Amsterdam, 1988.

    Google Scholar 

  23. O.D. Sherby and J. Wadsworth:Prog. Mater. Sci., 1989, vol. 33, pp. 169–221.

    Article  CAS  Google Scholar 

  24. M.F. Ashby and R.A. Verrall:Acta Metall., 1973, vol. 21, pp. 149–63.

    Article  CAS  Google Scholar 

  25. T.R. McNelley, D.J. Michel, and A.A. Salama:Scripta Metall., 1989, vol. 23, pp. 1657–62.

    Article  CAS  Google Scholar 

  26. J.W. Edington, K.N. Melton, and C.P. Cutler:Prog. Mater. Sci., 1976, vol. 21, p. 61.

    Article  CAS  Google Scholar 

  27. C. Gandhi and R. Raj:Acta Metall. Mater., 1991, vol. 39, pp. 679–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, H.P., Liu, F.C. & Huang, J.C. Characterization and analysis of low-temperature superplasticity in 8090 Al-Li alloys. Metall Mater Trans A 26, 1153–1166 (1995). https://doi.org/10.1007/BF02670612

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670612

Keywords

Navigation