Skip to main content
Log in

Analysis of the temperature dependence of strain-hardening behavior in high- strength steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The stress-strain data of a high-strength low-alloy (HSLA) steel were measured at different temperatures and analyzed in terms of strain-hardening laws proposed by Hollomon,[1] Ludwik,[2] Swift,[3] and Voce.[4] Four methods of analysis, as suggested by Kleemola and Nieminen (K-N),[7] Crussard and Jaoul (C-J),[16] Ramani and Rodriguez (R-R),[11] and Guimarães (G),[15] have been employed. The C-J analysis has been extended to the Voce equation for the first time. The results have been discussed in terms of the linear correlation coefficient and error in the estimation of uniform strain. The Voce equation has been found to describe the flow be-havior most accurately. The observed increase in flow stress in the dynamic strain aging (DSA) range has been explained in terms of temperature-dependent strain-hardening parameters. It has been established that with increase in the value of the Voce strain component, nv, the magnitude of the saturation stress approaches that of the ultimate tensile stress. A linear relationship has been established between ultimate tensile stress and saturation stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ :

flow stress

ε:

accumulated strain in course of deformation

ε :

train rate

T :

temperature

K H, nH :

Hollomon parameters

σo :

flow stress at

nil :

plastic strain

K L, nL :

Ludwik parameters

εo, KS, nS :

Swift parameters

σs :

saturation stress

Kv, nv, σ1 :

Voce equation

σpl :

proportional limit stress

θo :

initial strain-hardening rate

K1L K2L :

Ludwigson constants

n1L, n2L Σ σ*L :

A*L Ramani-Rodriguez parameters employed in Ludwik relation

(Σ is:

mean in flow stress)

ε ε*, A*S :

Ramani-Rodriguez parameters employed in Swift relation

(ε is:

mean accumulated strain)

σ*v :

A*v Ramani-Rodriguez parameters employed in Voce equation

σu :

ultimate tensile strength

εu,relation :

uniform strain computed from a particular relation

εγ :

Luder or yield strain

σ ly :

lower yield strength

σ0.2 :

0.2 pct proof strength

References

  1. J.H. Hollomon:Trans. AIME, 1945, vol. 162, pp. 268–90. 2. P. Ludwik: Elemente der Technologischen Mechanik, Verlag Von Julius Springer, Leipzig, 1909, p. 32.

    Google Scholar 

  2. P. Ludwik:Elemente der Technologischen Mechanik, Verlag Von Julius Springer Leipzig, 1909, {p32}.

    Google Scholar 

  3. H.W. Swift:J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.

    Article  Google Scholar 

  4. E. Voce:J. Inst. Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  5. D.C. Ludwigson:Metall. Trans., 1971, vol. 2, pp. 2825–28.

    CAS  Google Scholar 

  6. R.E. Reed-Hill, W.R. Cribb, and S.N. Monteiro:Metall. Trans., 1973, vol. 4, pp. 2665–67.

    CAS  Google Scholar 

  7. H.J. Kleemola and M.A. Nieminen:Metall. Trans., 1974, vol. 5, pp. 1863–66.

    Article  CAS  Google Scholar 

  8. Y. Tomita and K. Okabayashi:Metall. Trans. A, 1984, vol. 16A, pp. 2247–49.

    Google Scholar 

  9. S. Mattiazzi, G. Pilatti, and D. Boerman:Mechanical Behaviour and Nuclear Application of Stainless Steels at Elevated Temper- atures, TMS, London, 1982, pp. 194–202.

    Google Scholar 

  10. M.G. Stout and P.S. Follansbee:J. Eng. Mater. Technol. (Trans. ASME), 1986, vol. 108, pp. 344–53.

    Article  CAS  Google Scholar 

  11. S.V. Ramani and P. Rodriguez:Scripta Metall., 1970, vol. 4, pp. 755–60.

    Article  CAS  Google Scholar 

  12. C. Zener and J.H. Hollomon:J. Appl. Phys., 1946, vol. 17, pp. 68–92.

    Article  Google Scholar 

  13. E.W. Hart, C.Y. Li, H. Yamada, and G.L. Wire:Constitutive Equations in Plasticity, A.S. Argon, ed., MIT Press, Cambridge, MA, 1975, pp. 149–97.

    Google Scholar 

  14. J.F. Thomas:Process Modeling Applied to Metal Forming and Thermomechanical Processing, NATO Lecture Series No. 137, Neuilly-Sur-Seine, France, 1985, pp. 11–118.

    Google Scholar 

  15. J.R.C. Guimarães:Scripta Metall., 1974, vol. 8, pp. 919–22.

    Article  Google Scholar 

  16. C.H. Crussard and B. Jaoul:Rev. Metallurgie, 1950, vol. 42, pp. 589–600.

    Google Scholar 

  17. C. Crussard:Rev. Metallurgie, 1950, vol. 42, pp. 697–710.

    Google Scholar 

  18. B. Jaoul:J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  Google Scholar 

  19. E. A. Volkov:Numerical Methods, Mir Publishers, Moscow, 1986, p. 99.

    Google Scholar 

  20. R.G. Stanton and W.D. Hoskins:Physical Chemistry, An Ad- vanced Treatise, Vol. XIA, Mathematical Methods, D. Henderson, ed., Academic Press, New York, NY, 1975, pp. 337–72.

    Google Scholar 

  21. U.F. Kocks:J. Eng. Mater. Technol. (Trans. ASME), 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  22. W. Truszkowski:Mem. Sci. Rev. Met., 1980, vol. 77, pp. 193–201.

    CAS  Google Scholar 

  23. Kanji Ono:Metall. Trans., 1972, vol. 3, pp. 749–51.

    CAS  Google Scholar 

  24. H. Mecking:Strength of Metals and Alloys, ICSMA-5, P. Haasen, V. Gerold, and G. Kostrotz, eds., Pergamon Press, New York, NY, 1980, pp. 1573–94.

    Google Scholar 

  25. D.L. Baragar:J. Mech. Work. Technol., 1987, vol. 14, pp. 295–307.

    Article  CAS  Google Scholar 

  26. G. Zenkle:Naturforscher, 1963, vol. 18A, pp. 795–809.

    Google Scholar 

  27. W.B. Morrison:Metall. Trans., 1971, vol. 2, pp. 331–32.

    Article  CAS  Google Scholar 

  28. Y. Bergstorm and B. Aronsson:Metall. Trans., 1970, vol. 1, pp. 1029–30.

    Google Scholar 

  29. M. Atkinson:J. Aust. lnst. Met., 1977, vol. 22, pp. 183–88.

    CAS  Google Scholar 

  30. B.K. Jha, R. Avtar, V.S. Dwivedi, and V. Ramaswamy:J. Mater. Sci. Lett., 1987, vol. 6, pp. 891–93.

    Article  CAS  Google Scholar 

  31. K. Lucke and H. Mecking:The Inhomogeneity of Plastic Defor- mation, R.E. Reed-Hill, ed., ASM, Metals Park, OH, 1973, pp. 223–50.

    Google Scholar 

  32. B. Nicklas and H. Mecking:Strength of Metals and Alloys ICSMA-5, P. Hassen, V. Gerold, and G. Kostrotz, eds., Pergamon Press, New York, NY, 1979, pp. 351–56.

    Google Scholar 

  33. U.F. Kocks, A.S. Argon, and M.F. Ashby:Prog. Mater. Sci., 1975, vol. 19, pp. 1–291.

    Article  Google Scholar 

  34. H. Mecking:Dislocation Modeling of Physical Systems, M.F. Ashby, R. Bullough, C.S. Hartley, and J.P. Hirth, eds., Pergamon Press, New York, NY, 1981, pp. 197–211.

    Google Scholar 

  35. G. Ferron and M. Mliha-Touati:Acta Metall., 1987, vol. 35, pp. 1281–93.

    Article  CAS  Google Scholar 

  36. G. Gottstein and A.S. Argon:Acta Metall., 1987, vol. 35, pp. 1261–71.

    Article  CAS  Google Scholar 

  37. Y. Estrin and H. Mecking:Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  38. S.N. Monteiro and R.E. Reed-Hill:Metall. Trans., 1971, vol. 2, pp. 2947–48.

    CAS  Google Scholar 

  39. W.B. Morrison:Metall. Trans., 1971, vol. 2, pp. 2948–49.

    Article  CAS  Google Scholar 

  40. H.G. Brion, P. Haasen, and H. Siethoff:Strength of Metals and Alloys, ICSMA 6, 1985, H.J. Mcqueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, New York, NY, 1986, pp. 15–20.

    Google Scholar 

  41. A.M. Eleiche:J. Mech. Work. Technol., 1986, vol. 13, pp. 23–37.

    Article  Google Scholar 

  42. A.H. Cottrell and B.A. Bilby:Proc. Phys. Soc, 1949, vol. 62, pp. 49–62.

    Google Scholar 

  43. Y. Bergstrom and W. Roberts:Acta Metall., 1971, vol. 19, pp. 815–23.

    Article  CAS  Google Scholar 

  44. Y. Nakada and A.S. Keh:Acta Metall., 1970, vol. 18, pp. 437–43.

    Article  CAS  Google Scholar 

  45. J.D. Baird:The Inhomogeneity of Plastic Deformation, R.E. Reed- Hill, ed., ASM, Metals Park, OH, 1973, pp. 191–222.

    Google Scholar 

  46. R.A. Mulford and U.F. Kocks:Acta Metall., 1979, vol. 27, pp. 1125–34.

    Article  CAS  Google Scholar 

  47. S. Miura, A. Haerian, and S. Hashimoto:J. Mater. Sci., 1987, vol. 22, pp. 3446–52.

    Article  CAS  Google Scholar 

  48. G.G. Saha, P.G. McCormick, and P. Rama Rao:Mater. Sci. Eng., 1984, vol. 62, pp. 187–96.

    Article  CAS  Google Scholar 

  49. M.J. Roberts and W.S. Owen:Metall. Trans., 1970, vol. 1, pp. 3203–13.

    CAS  Google Scholar 

  50. P.G. McCormick:Trans. Indian lnst. Met., 1986, vol. 39, pp. 98–105.

    Google Scholar 

  51. R.E. Reed-Hill and T. Zhu:High Temp. Mater. Processes, 1984, vol. 6, pp. 93–117.

    Google Scholar 

  52. S.H. van den Brink, A. van den Beukl, and P.G. McCormick:Phys. Status Solidi A, 1975, vol. 30, pp. 469–77.

    Article  Google Scholar 

  53. C.G. Schmidt and A.K. Miller:Acta Metall., 1982, vol. 30, pp. 615–25.

    Article  CAS  Google Scholar 

  54. N.S. Mishra and Sanak Mishra:39th Annual Tech. Meet. Indian lnst. of Metals, Nov. 14-17, 1985, Jamshedpur and41st Meet., Nov. 12-14, 1987, Trivandrum, India, in press.

  55. R.R. Jensen and J.K. Tien:Metall. Trans. A, 1985, vol. 10A, pp. 1049–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, N.S., Mishra, S. & Ramaswamy, V. Analysis of the temperature dependence of strain-hardening behavior in high- strength steel. Metall Trans A 20, 2819–2829 (1989). https://doi.org/10.1007/BF02670174

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670174

Keywords

Navigation