Skip to main content
Log in

{011} Twinning in Fe-Ni-C martensites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The substructures of two Fe-Ni-C alloys that form platelike martensite have been studied by transmission electron microscopy (TEM). Planar features with a {011 } habit are observed, in addition to the usual {112 } transformation twins and arrays of screw dislocations. The results of diffraction-contrast experiments are consistent with these {011 } defects being fine twins within which the carbon atoms occupy a different octahedral interstitial sublattice from the surrounding matrix. In any given martensitic plate, this twinning appears to occur preferentially on the {011 } plane containing the same {111 } direction as the operative {112 } transformation-twinning variant. The possibility that {011 } twinning occurs during the martensitic transformation and/or when virgin martensite is heated from subambient temperatures is discussed in relation to crystallographic observables such as the martensitic habit plane and axial ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Nishiyama:Martensitic Transformation, Academic Press, New York, NY, 1978.

    Google Scholar 

  2. M. Cohen and C.M. Way man: inMetallurgical Treatises, J.K. Tien and J.F. Elliott, eds., TMS-AIME, Warrendale, PA, 1981, pp. 445–68.

    Google Scholar 

  3. R.L. Patterson and CM. Wayman:Acta Metall., 1966, vol. 14, pp. 347–69.

    Article  CAS  Google Scholar 

  4. V.I. Izotov and L.M. Utevskiy:Phys. Met. Metallogr., 1968, vol. 25 (1), pp. 86–96.

    Google Scholar 

  5. R. Oshima and C.M. Wayman:Trans. JIM, 1975, vol. 16, pp. 73–86.

    CAS  Google Scholar 

  6. M. Oka and CM. Wayman:Trans. ASM, 1969, vol. 62, pp. 370–79.

    CAS  Google Scholar 

  7. A.K. Sachdev: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1977.

    Google Scholar 

  8. A.L. Roytburd and A.G. Khachaturyan:Phys. Met. Metallogr., 1970, vol. 30 (6), pp. 68–77.

    Google Scholar 

  9. G.V. Kurdjumov and A.G. Khachaturyan:Acta Metall., 1975, vol. 23, pp. 1077–88.

    Article  Google Scholar 

  10. G. Metauer and J.-M. Schissler:Mém. Sci. Rev. Mét., 1974, vol. 71, pp. 295–306.

    CAS  Google Scholar 

  11. K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande:Metall. Trans. A, 1989, vol. 20A, pp. 2717–37.

    CAS  Google Scholar 

  12. P. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan:Electron Microscopy of Thin Crystals, Krieger, Huntington, NY, 1977.

    Google Scholar 

  13. R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, and S. Amelinckx:Phys. Status Solidi, 1964, vol. 5, pp. 595–633.

    Article  CAS  Google Scholar 

  14. B.P.J. Sandvik and CM. Wayman:Metallography, 1983, vol. 16, pp. 429–47.

    Article  CAS  Google Scholar 

  15. M. Kusunoki and S. Nagakura:J. Appl. Crystallogr., 1981, vol. 14, pp. 329–36.

    Article  CAS  Google Scholar 

  16. G.V. Kurdjumov:Metall. Trans. A, 1976, vol. 7A, pp. 999–1011.

    Google Scholar 

  17. A.G. Khachaturyan:Theory of Structural Transformations in Solids, John Wiley & Sons, Inc., New York, NY, 1983.

    Google Scholar 

  18. P.C. Chen and P.G. Winchell:Metall. Trans. A, 1980, vol. 11A, pp. 1333–39.

    CAS  Google Scholar 

  19. A.G. Khachaturyan, A.F. Rumynina, and G.V. Kurdjumov:Proc. Int. Conf. on Martensitic Transformations, MIT Press, Cambridge, MA, 1980, pp. 71–81.

    Google Scholar 

  20. Note added in proof. After this manuscript was accepted for pub- lication, a paper by Danil’chenko (V.Ye. Danil’chenko:Phys. Met. Metallogr., 1987, vol. 64, pp. 110-14.) came to our atten- tion. The latter research showed that most of the 1 twinning in a Fe-24Ni-0.5C martensite occurs upon warming from sub- ambient temperature.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The tetragonal symmetry of martensite dictates that the absolute value of the underlined index be fixed when obtaining equivalent crystallographic variants. Small contractions along the αa- andb-axes accompany the expansion along thec-axis. formerly with the Massachusetts Institute of Technology, formerly with the Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, K.A., Olson, G.B., Cohen, M. et al. {011} Twinning in Fe-Ni-C martensites. Metall Trans A 20, 2739–2747 (1989). https://doi.org/10.1007/BF02670167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670167

Keywords

Navigation