Skip to main content
Log in

Analytical electron microscopy studies of radiation damage

  • Symposium on Irradiation-Enhanced Materials Science and Engineering
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Analytical electron microscopy (AEM) has provided structural, crystallographic, and compositional characterization to aid in the understanding of radiation damage processes, especially in multiphase materials. The range of AEM techniques is based on the use of as many of the signals produced by the interaction of an electron beam with a specimen as possible. This paper briefly discusses the origins, capabilities, and current developments of AEM, including the spatial resolution of the various techniques. Several important applications of AEM in radiation damage studies, including radiation-induced segregation and phase instability in austenitic stainless steels, will be reviewed. From the comparison of phase equilibria under irradiation to that under thermal aging, principles for alloy development in non-nuclear applications will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Introduction to Analytical Electron Microscopy, J.J. Hren, J.I. Goldstein, and D.C. Joy, eds., Plenum Press, New York, NY, 1979.

    Google Scholar 

  2. Principles of Analytical Electron Microscopy, D.C. Joy, A.D. Romig, Jr., and J.I. Goldstein, Plenum Press, New York, NY, 1986.

    Google Scholar 

  3. D.B. Williams:Practical Analytical Electron Microscopy in Ma- terials Science, Philips Electron Optics Publishing, Mahwah, NJ, 1984.

    Google Scholar 

  4. M.H. Loretto:Electron Beam Analysis of Materials, Chapman and Hall, New York, NY, 1984.

    Google Scholar 

  5. E.A. Kenik:Scripta Metall., 1987, vol. 21, pp. 811–26.

    Article  CAS  Google Scholar 

  6. R.F. Egerton:Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, NY, 1986.

    Google Scholar 

  7. J. Bentley,L.D. Stephenson, R.B. Benson, P.A. Parrish, and J.K. Hirvonen:Ion Implantation and Ion Beam Processing of Materials, MRS Symp. Proc, G.W. Hubler, O.W. Holland, C.R. Clayton, and C.W. White, eds., MRS, Pittsburgh, PA, 1984, vol. 27, pp. 151–56.

    Google Scholar 

  8. D.N. Braski, J. Bentley, and J.W. Cable:40th Proc. of Electron Microscopy Soc. Amer., G.W. Bailey, ed., San Francisco Press, San Francisco, CA, 1982, pp. 692–93.

    Google Scholar 

  9. Convergent Beam Electron Diffraction of Alloy Phases, J. Mansfield, ed., Actam Hilger Ltd., Bristol, England, 1984.

    Google Scholar 

  10. M. Tanaka and M. Terauchi:Convergent Beam Electron Dif- fraction, JEOL Ltd., Tokyo, Japan, 1985.

    Google Scholar 

  11. Phase Stability During Irradiation, J.R. Holland, L.K. Mansur, and D.I. Potter, eds., TMS-AIME, Warrendale, PA, 1981.

    Google Scholar 

  12. Effects of Radiation on Materials, Proc. 11th Int. Symp., ASTM STP 782, H.R. Brager and J.S. Perrin, eds., ASTM, Philadel- phia, PA, 1982.

    Google Scholar 

  13. Effects of Radiation on Materials, Proc. 12th Int. Symp., ASTM STP 870, H.R. Brager and J.S. Perrin, eds., ASTM, Philadel- phia, PA, 1985.

    Google Scholar 

  14. E.H. Lee, P.J. Maziasz, and A.F. Rowcliffe:Phase Stability During Irradiation, J.R. Holland, L.K. Mansur, and D.I. Potter, eds., TMS-AIME, Warrendale, PA, 1981, pp. 191–218.

    Google Scholar 

  15. E.A. Kenik:Scripta Metall., 1976, vol. 10, pp. 735–38.

    Google Scholar 

  16. E.H. Lee, A.F. Rowcliffe, and E.A. Kenik:J. Nucl. Mater., 1979, vol. 83, pp. 79–89.

    Article  CAS  Google Scholar 

  17. E.A. Kenik:Materials Problem Solving with the Transmission Electron Microscope, MRS Symp. Proc, L.W. Hobbs, K.H. Westmacott, and D.B. Williams, eds., MRS, Pittsburgh, PA, 1986, vol. 62, pp. 209–16.

    Google Scholar 

  18. E.H. Lee and E.A. Kenik:J. Mater. Res., 1988, vol. 3, pp. 840–44.

    CAS  Google Scholar 

  19. G.M. Worrall, J.T. Buswell, C.A. English, M.G. Hetherington, and G.D.W. Smith:J. Nucl. Mater., 1987, vol. 148, pp. 107–14.

    Article  CAS  Google Scholar 

  20. J.T. Buswell, C.A. English, M.G. Hetherington, W.J. Phythian, G.D.W. Smith, and G.M. Worrall:Effects of Radiation on Materials, Proc. 14th Int. Symp., N.H. Packan and R.E. Stoller, eds., ASTM, Philadelphia, PA, in press.

  21. C.S. Pande, M. Suenaga, B. Vyas, H.S. Isaacs, and D.F. Harlings:Scripta Metall., 1977, vol. 11, pp. 681–84.

    Article  CAS  Google Scholar 

  22. E.L. Hall and CL. Briant:Metall. Trans. A, 1984, vol. 15A, pp. 793–811.

    CAS  Google Scholar 

  23. Radiation-Induced Sensitisation of Stainless Steels, D.I.R. Norris, ed., Central Electricity Generating Board, Berkeley, England, 1987.

    Google Scholar 

  24. D.I.R. Norris, C. Baker, and J.M. Titchmarsh:Radiation-Induced Sensitisation of Stainless Steels, D.I.R. Norris, ed., Central Elec- tricity Generating Board, Berkeley, England, 1987, pp. 86–98.

    Google Scholar 

  25. T.M. Williams, R.H. Boothby, and J.M. Titchmarsh:Effects of Radiation on Materials, Proc. 14th Int. Symp., N.H. Packan and R.E. Stoller, eds., ASTM, Philadelphia, PA, pp. 116–34.

  26. W. Kesternich, N.H. Packan, and H. Schroeder:Electron Microscopy 1986, Proc. 11th Int. Cong, on Electron Micros- copy, T. Imura, S. Maruse, and T. Suzuki, eds., Japanese So- ciety of Electron Microscopy, Tokyo, Japan,J. Elec. Microsc 1986, vol. 35, pp. 1329–30.

    Google Scholar 

  27. S. Vaidyanatham, T. Lauritzen, and W.L. Bell:Effects of Ra- diation on Materials, Proc. 11th Int. Symp., ASTM STP 782, H.R. Brager and J.S. Perrin, eds., ASTM, Philadelphia, PA, 1982, pp. 619–35.

    Google Scholar 

  28. P.S. Sklad, R.E. Clausing, and E.E. Bloom:Irradiation Effects on the Microstructure and Properties of Metals, Proc. 8th Int. Symp., ASTM STP 611, F.R. Shober and J.A. Sprague, eds., ASTM, Philadelphia, PA, 1985.

    Google Scholar 

  29. P.J. Maziasz and C.J. McHargue:Inter. Mater. Rev., 1987, vol. 32, pp. 190–219.

    CAS  Google Scholar 

  30. P.J. Maziasz:MiCon 86: Optimization of Processing, Properties, and Service Performance Through Microstructural Control, B.L. Bramfitt, R.L. Benn, C.R. Brinkman, and G.F. Vander Voort, eds., ASTM STP 979, ASTM, Philadelphia, PA, 1988, pp. 116–61.

    Google Scholar 

  31. P.J. Maziasz and R.W. Swindeman:Advances in Material Technology for Fossil Power Plants, R. Viswanathan and R.I. Jaffee, eds., ASM INTERNATIONAL, Cleveland, OH, 1987, pp. 283–90.

    Google Scholar 

  32. P.J. Maziasz and D.N. Braski:J. Nucl. Mater., 1984, vol. 122, pp. 311–17.

    Article  CAS  Google Scholar 

  33. P.J. Maziasz and D.N. Braski:J. Nucl. Mater., 1986, vol. 141- 43, pp. 973–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25-29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenik, E.A. Analytical electron microscopy studies of radiation damage. Metall Trans A 20, 2663–2671 (1989). https://doi.org/10.1007/BF02670159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670159

Keywords

Navigation