Skip to main content
Log in

Tracer diffusion

  • Symposium on Irredition-Enhanced Meterials Science and Engineering
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The properties of point defects are of major concern in the interpretation and application of irradiation effects in solids. To this end, diffusion studies provide valuable understanding and information. A central tool is the high specific-activity radiotracer, itself a product of nuclear research. This paper reviews the development of our understanding of atomic migration phenomena, starting from the period just after World War II, when radiotracers became generally available. Application of these techniques, along with developments in other fields, soon provided detailed thermodynamic and dynamic information about microscopic point defect processes. In the cases of such simple metals as the pure noble metals, we now have convincing models of mechanism, along with quantitative values of such parameters as activation enthalpies and entropies, correlation factors, activation volumes, and the energetics of interactions with solute ions and with other defects. For other systems, such as the bcc metals, tracer studies have provided a wealth of knowledge and have revealed a rich range of phenomena, many of which have not yet been unambiguously explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Shewmon:Diffusion in Solids, McGraw-Hill, New York, NY, 1963, p. 203.

    Google Scholar 

  2. L. Girifalco:Atomic Migration in Crystals, Blaisdell, New York, NY, 1964, p. 162.

    Google Scholar 

  3. Y. Adda and J. Philibert:La Diffusion dans les Solides, Presses Universitaires de France, Paris, 1966, vols. 1-2, p. 1268.

    Google Scholar 

  4. J. Manning:Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, NJ, 1968.

    Google Scholar 

  5. N. Peterson:Diffusion in Metals inSol. State Phys., F. Seitz, D. Turnbull, and H. Ehrenreich, eds., Academic Press, New York, NY, 1968, vol. 22, pp. 409–512.

    Google Scholar 

  6. C.P. Flynn:Point Defects and Diffusion, Clarendon Press, Oxford, 1972.

    Google Scholar 

  7. R. Borg and G. Dienes:Introduction to Solid State Diffusion, Academic Press, Orlando, FL, 1988.

    Google Scholar 

  8. Diffusion, H. Aronson, ed., ASM, Metals Park, OH, 1973.

    Google Scholar 

  9. Diffusion in Solids—Recent Developments, A. Nowick and J. Burton, eds., Academic Press, Orlando, FL, 1975.

    Google Scholar 

  10. Dimeta-82: Diffusion in Metals and Alloys, F. Kedves and D. Beke, eds., Trans Tech Publications Ltd., Aedermannsdorf, SO, Switzerland, 1983.

    Google Scholar 

  11. Diffusion in Solids in Materials Science Forum, A. Laskar, G. Tiwari, E. Subbarao, and R. Krishnan, eds., Trans Tech Pub- lications Ltd., Aedermannsdorf, SO, Switzerland, 1984, vol. 1.

    Google Scholar 

  12. Diffusion in Crystalline Solids, G. Murch and A. Nowick, eds., Academic Press, Orlando, FL, 1984.

    Google Scholar 

  13. W. Johnson:Trans. AIME, 1941, vol. 143-47 p. 197; 1942, vol. 147, pp. 331-46.

    Google Scholar 

  14. L. Darken:Trans. AIME, 1948, vol. 175, pp. 184–93.

    Google Scholar 

  15. A. Smigelskas and E. Kirkendall:Trans. AIME, 1947, vol. 171, pp. 130–34.

    Google Scholar 

  16. L. Correa da Silva and R. Mehl:J. Met., 1951, vol. 191, pp. 155–73.

    Google Scholar 

  17. F. Seitz:Phys. Rev., 1948, vol. 74, pp. 1513–23; Acta Crystall., 1950, vol. 3, pp. 355-63.

    Article  CAS  Google Scholar 

  18. H. Huntington and F. Seitz:Phys. Rev., 1949, vol. 76, p. 1728; 1953, vol. 91, pp. 1092-98.

    Article  CAS  Google Scholar 

  19. C. Wert:Phys. Rev., 1950, vol. 79, pp. 601–05; J. Appl. Phys., 1950, vol. 21, pp. 1196-97.

    Article  CAS  Google Scholar 

  20. C. Zener:J. Appl. Phys., 1951, vol. 22, pp. 372–75.

    Article  CAS  Google Scholar 

  21. A. Nowick:J. Appl. Phys., 1951, vol. 22, pp. 1182–86.

    Article  CAS  Google Scholar 

  22. J. Bardeen and C. Herring:Diffusion in Alloys inImperfections in Nearly Perfect Crystals, W. Shockley, J. Hollomon, R. Maurer, and F. Seitz, eds., John Wiley & Sons, New York, NY, 1952; pp. 261–88.

    Google Scholar 

  23. A. Schoen:Phys. Rev. Lett., 1958, vol. 1, pp. 138–40 and 184.

    Article  CAS  Google Scholar 

  24. S. Rothman and N. Peterson:Phys. Rev., 1967, vol. 154, pp. 552–58.

    Article  CAS  Google Scholar 

  25. D. Lazarus:Phys. Rev., 1954, vol. 93, pp. 973–76.

    Article  CAS  Google Scholar 

  26. A. LeClaire:Phil. Mag., 1962, vol. 7, pp. 141–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25-29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slifkin, L. Tracer diffusion. Metall Trans A 20, 2577–2582 (1989). https://doi.org/10.1007/BF02670151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670151

Keywords

Navigation