Skip to main content
Log in

Nonequilibrium behavior in the Al-Ge alloy system: Insights into the metastable phase diagram

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The competitive formation of metastable and stable phases during nonequilibrium processing of Al-Ge alloys and the corresponding metastable phase equilibria have been investigated. For germanium concentrations in the range 30 to 50 at. pct, it is shown that the four metastable phases can be ranked in order of decreasing stability as follows: monoclinic (P21/c), rhombohedral (R-C), orthorhombic (Pbca), and hexagonal (P6/mmm). Their formation depends not only on the transformation temperature(e.g., the liquid undercooling), but also on the presence of appropriate heterogeneous nucleation sites. For example, the orthorhombic phase has only been observed in amorphous films after rapid annealing/crystallization treatments. It is also shown that all of these phases form metastable equilibria with α-aluminum only,i.e., no metastable phase equilibria appear to exist between any metastable phase and β-germanium or between any two metastable phases. Consequently, it is not possible to draw a single metastable phase diagram that incorporates all of these phases with phase boundaries that represent their metastable equilibria; rather, separate diagrams should be drawn for each metastable phase. It is noted that these diagrams should extend only to the metastable phase field rather than all the way to pure germanium: for compositions richer in germanium, the results indicate that the metastable phase forms and then remelts upon the formation of germanium or a more stable, germanium-enriched metastable phase. Furthermore, it is proposed that this behavior is rather general in nature. Finally, it is concluded that the production of metastable phases in bulk form, in systems such as this where so many reactions occur simultaneously and competitively, might be impossible using solidification processing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez, R.H. Willens, and W. Klement:J. Appl. Phys., 1960, vol. 31, pp. 1136–37.

    Article  CAS  Google Scholar 

  2. B.C. Giessen: inDevelopments in the Structural Chemistry of Alloy Phases, B.C. Giessen, ed., Plenum Press, New York, NY, 1979, pp. 227–81.

    Google Scholar 

  3. H. Jones and C. Suryanarayana:J. Mater. Sci., 1973, vol. 8, pp. 705–53.

    Article  CAS  Google Scholar 

  4. P. Ramachandrarao, M.G. Scott, and G.A. Chadwick:Phil. Mag., 1972, vol. 25, pp. 961–82.

    Article  CAS  Google Scholar 

  5. D.E. Polk and B.C. Giessen: inMetallic Glasses, ASM, Metals Park, OH, 1978, pp. 1–35.

    Google Scholar 

  6. R.W. Cahn:Contemp. Phys., 1980, vol. 21, pp. 43–75.

    Article  CAS  Google Scholar 

  7. R.W.K. Honeycombe:Proc. 3rd Int. Conf. on Rapidly Quenched Metals, B. Cantor, ed., Metals Society, London, 1978, vol. 1, p. 73.

    Google Scholar 

  8. Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, pp. 116-17.

  9. P. Predecki, B.C. Giessen, and N.J. Grant:Trans. TMS-AIME, 1965, vol. 233, pp. 1438–39.

    CAS  Google Scholar 

  10. C. Suryanarayana and T.R. Anantharaman:J. Mater. Sci., 1970, vol. 5, pp. 992–1004.

    Article  CAS  Google Scholar 

  11. U. Kosten:Z. Metallic., 1972, vol. 63, pp. 472–79.

    Google Scholar 

  12. U. Köster:Acta Metall., 1972, vol. 20, pp. 1361–70.

    Article  Google Scholar 

  13. C. Suryanarayana and T.R. Anantharaman:Z. Metallic., 1973, vol. 64, pp. 800–04.

    CAS  Google Scholar 

  14. B. Predel and G. Schluckebier:Z. Metallk., 1972, vol. 63, pp. 198–203.

    CAS  Google Scholar 

  15. M.G. Scott:Z. Metallk., 1974, vol. 65, pp. 563–65.

    CAS  Google Scholar 

  16. M. Laridjani and R.W. Cahn:Mater. Sci. Eng., 1976, vol. 23, pp. 125–29.

    Article  CAS  Google Scholar 

  17. M. Laridjani, K.D. Krishnanand, and R.W. Cahn:J. Mater. Sci., 1976, vol. 11, pp. 1643–52.

    Article  CAS  Google Scholar 

  18. P. Ramachandrarao, K. Lal, A. Singhdeo, and K. Chattopadhyay:Mater. Sci. Eng., 1979, vol. 41, pp. 259–64.

    Article  CAS  Google Scholar 

  19. M.J. Kaufman and H.L. Fraser:Mater. Sci. Eng., 1983, vol. 57, pp. L17-L19.

    Article  CAS  Google Scholar 

  20. M.J. Kaufman and H.L. Fraser:Metall. Trans. A, 1983, vol. 14A, pp. 623–33.

    Google Scholar 

  21. M.J. Kaufman and H.L. Fraser:Acta Metall., 1985, vol. 33, pp. 191–203.

    Article  CAS  Google Scholar 

  22. M.J. Kaufman and H.L. Fraser:Int. J. Rapid Solidification, 1984-85, vol. 1, pp. 27–50.

    CAS  Google Scholar 

  23. S.N. Ojha, K. Chattopadhyay, and P. Ramachandrarao:Mater. Sci. Eng., 1985, vol. 73, pp. 177–85.

    Article  CAS  Google Scholar 

  24. M.J. Kaufman, M. Ellner, and H.L. Fraser:Scripta Metall., 1986, vol. 20, pp. 125–28.

    Article  CAS  Google Scholar 

  25. M.J. Kaufman, J.E. Cunningham, Jr., and H.L. Fraser:Acta Metall., 1987, vol. 35, pp. 1181–92.

    Article  CAS  Google Scholar 

  26. J.L. Murray:MRS Symp. on Alloy Phase Diagrams, L.H. Bennett, T.B. Massalski, and B.C. Giessen, eds., Elsevier Science Publishing Co., Inc., New York, NY, 1983, vol. 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laoui, T., Kaufman, M.J. Nonequilibrium behavior in the Al-Ge alloy system: Insights into the metastable phase diagram. Metall Trans A 22, 2141–2152 (1991). https://doi.org/10.1007/BF02669882

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669882

Keywords

Navigation