Skip to main content
Log in

Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxedy constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Martin, D.H. Carter, R.M. Aikin, Sr., R.M. Aikin, Jr., and L. Christodoulou:Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, 1990, pp. 265–75.

    Google Scholar 

  2. P.L. Martin, M.G. Mendiratta, and H. Lipsitt:Metall. Trans. A, 1983, vol. 14A, pp. 2170–74.

    CAS  Google Scholar 

  3. R.W. Hayes and B. London:Acta Metall, 1992, vol. 40, pp. 2167–75.

    Article  CAS  Google Scholar 

  4. H. Oikawa:Mater. Sci. Eng., 1992, vol. A153, pp. 427–32.

    CAS  Google Scholar 

  5. R.W. Hayes and P.L. Martin:Proc. 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, 1993.

    Google Scholar 

  6. S. Mitao, S. Tsuyama, and K. Minakawa:Mater. Sci. Eng., 1991, vol. A143, pp. 51–62.

    CAS  Google Scholar 

  7. B.D. Worth, J.W. Jones, J.E. Allison, and W.E. Dowling, Jr.:Proc. 7th World Conf. on Titanium, I.X. Caplan and F.H. Froes, eds., TMS, Warrendale, PA, 1993.

    Google Scholar 

  8. M.F. Bartholomeusz, Q. Yang, and J.A. Wert:Scripta Metall, 1993, vol. 29, pp. 389–94.

    Article  CAS  Google Scholar 

  9. M.F. Bartholomeusz and J.A. Wert:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2161–71.

    Article  CAS  Google Scholar 

  10. W.E. Dowling Jr., B.D. Worth, J.E. Allison, J.W. Jones:Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 123–34.

    Google Scholar 

  11. S.C. Huang and D.S. Shih: inProperties and Microstructures of High-Temperature Materials, Y. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 105–22.

    Google Scholar 

  12. B.A. Greenberg, and O.V. Antonova, V.N. Indebaum, and L.E. Karkina:Acta Metall., 1991, vol. 39, pp. 233–42.

    Article  Google Scholar 

  13. V.K. Vasudevan, S.A. Court, and P. Kurath:Scripta Metall., 1989, vol. 23, pp. 907–12.

    Article  CAS  Google Scholar 

  14. V.K. Vasudevan, M.A. Stucke, C.A. Court, and H.L. Frasier:Phil. Mag. Lett., 1989, vol. 59, pp. 299–307.

    Article  CAS  Google Scholar 

  15. B.D. Worth, J.W. Jones, and J.E. Allison:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 0000.

    Google Scholar 

  16. M.J. Blackburn and M.P. Smith:R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines, AFWAL-TR-82-4086, 1982.

  17. C. McCullough, J. Valencia, and H. Mateos:Scripta Metall., 1988, vol. 22, pp. 1131–36.

    Article  CAS  Google Scholar 

  18. F. Appel, A. Beaven, and R. Wagner:Acta Metall. Mater., 1993, vol. 41, pp. 1721–32.

    Article  CAS  Google Scholar 

  19. P. Rao and K. Tangri:Mater. Sci. Eng., 1991, vol. A132, pp. 49–59.

    CAS  Google Scholar 

  20. B.F. Dyson and M. McLean:Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 802–11.

    CAS  Google Scholar 

  21. A. Loiseau and A. Lasalmonie:Mater. Sci. Eng., 1984, vol. 67, pp. 163–68.

    Article  CAS  Google Scholar 

  22. S. Farenc, A. Coujou, and A. Couret:Mater. Sci. Eng., 1993, vol. A164, pp. 438–42.

    CAS  Google Scholar 

  23. Z. Jin and T. Bieler:Scripta Metall., 1992, vol. 27, pp. 1301–06.

    Article  CAS  Google Scholar 

  24. R. Raj and A.K. Ghosh:Acta Metall., 1981, vol. 29, pp. 283–92.

    Article  Google Scholar 

  25. D.I. Kimm and J. Wolfenstine:Scripta Metall., 1994, vol. 30, pp. 615–20.

    Article  CAS  Google Scholar 

  26. G. Hug, A. Loiseau, and P. Veyssiere:Phil. Mag., 1988, vol. 57, pp. 499–523.

    Article  CAS  Google Scholar 

  27. Y. Umakoshi and T. Nakano:Acta Metall., 1993, vol. 41, pp. 1155–61.

    Article  CAS  Google Scholar 

  28. S. Takeuchi and A.S. Argon:Acta Metall., 1976, vol. 24, pp. 883–89.

    Article  CAS  Google Scholar 

  29. W.T. Donlon, W.E. Dowling, Jr., and J.E. Allison: inProperties and Microstructures of High-Temperature Materials, Y. Kim and R.R. Boyer, eds. TMS, Warrendale, PA, 1991, pp. 75–87.

    Google Scholar 

  30. W.E. Dowling, Jr., B.D. Worth, W.T. Donlon, and J.E. Allison: inProc. 7th World Conf. on Titanium, TMS, Warrendale, PA, 1993.

    Google Scholar 

  31. A. Denquin, S. Naka, A. Huguet, and A. Menand:Scripta Metall., 1993, vol. 28, pp. 1131–36.

    Article  CAS  Google Scholar 

  32. B. Burton:Phil. Mag. A, 1982, vol. 45, pp. 657–75.

    Article  CAS  Google Scholar 

  33. J.P. Hirth and J. Lothe: inTheory of Dislocations, John Wiley and Sons, New York, NY, 1982.

    Google Scholar 

  34. B. Burton:Acta Metall., 1982, vol. 30, pp. 905–10.

    Article  CAS  Google Scholar 

  35. S. Kroll, H. Mehrer, N. Stolwijk, C. Herzig, R. Rosenkranz, and G. Frommeyer:Z. Metallkd, 1992, vol. 83, pp. 591–95.

    CAS  Google Scholar 

  36. Robert E. Schafrik:Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    CAS  Google Scholar 

  37. H. Inui, A. Nakamura, M.H. Oh, and M. Yamaguchi:Phil. Mag. A, 1992, vol. 66, pp. 557–73.

    Article  CAS  Google Scholar 

  38. Y.W. Kim:J. Met., 1989, vol. 41, pp. 24–30.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

BRIAN D. WORTH, formerly with the Department of Materials Science and Engineering, The University of Michigan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worth, B.D., Jones, J.W. & Allison, J.E. Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V. Metall Mater Trans A 26, 2947–2959 (1995). https://doi.org/10.1007/BF02669651

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669651

Keywords

Navigation