Skip to main content
Log in

Analysis of elastothermodynamic damping in particle-reinforced metal-matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

When a composite material is subjected to a homogeneous or inhomogeneous stress field, different phases undergo different temperature fluctuations due to the well-known thermoelastic effect. As a result, irreversible heat conduction occurs and entropy is produced. This entropy production is the genesis of elastothermodynamic damping. Recently, taking the second law of thermodynamics as a starting point, a general methodology for calculating the elasto-thermodynamic damping was presented by Kinra and Milligan. Using this method, we calculate the elastothermodynamic damping for two canonical problems concerning particle-reinforced metal-matrix composites: (1) a single spherical inclusion in an unbounded matrix and (2) anN layer finite concentric composite sphere. In both cases, a uniform radial time-harmonic loading is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kinra and K. Milligan:J. Appl. Mech., 1994, vol. 61, pp. 71–76.

    CAS  Google Scholar 

  2. A. Nowick and B. Berry:Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.

    Google Scholar 

  3. R. De Batist:Internal Friction of Structural Defects in Crystalline Solids, American Elsevier, New York, NY, 1972.

    Google Scholar 

  4. ASTM STP 1169, V. Kinra and A. Wolfenden, eds., ASTM, Philadelphia, PA, 1992.

  5. B. Boley and J. Weiner:Theory of Thermal Stresses, John Wiley and Sons, New York, NY, 1960.

    Google Scholar 

  6. M. Zemansky and R. Dittman:Heat and Thermodynamics, 6th ed., McGraw-Hill, New York, NY, 1981, pp. 224–25.

    Google Scholar 

  7. C. Zener:Phys. Rev., 1937, vol. 52, pp. 230–35.

    Article  Google Scholar 

  8. C. Zener:Phys. Rev., 1938, vol. 53, pp. 90–99.

    Article  Google Scholar 

  9. C. Zener:Elasticity and Anelasticity of Metals, The University of Chicago Press, Chicago, IL, 1948.

    Google Scholar 

  10. M. Biot:J. Appl. Phys., 1956, vol. 27 (3), pp. 240–53.

    Article  Google Scholar 

  11. J. Alblas:Appl. Sci. Res., 1961, vol. 10,Sec. A, pp. 349–67.

    Article  Google Scholar 

  12. J. Alblas:J. Thermal Stresses, 1981, vol. 4, pp. 333–55.

    Article  Google Scholar 

  13. P. Chadwick:Mathematika, 1962, vol. 9, pp. 38–48.

    Article  Google Scholar 

  14. J. Tasi:J. Appl. Mech., 1963, vol. 30, pp. 562–67.

    Google Scholar 

  15. J. Tasi and G. Herrmann:J. Acoust. Soc. Am., 1964, vol. 36 (1), pp. 100–10.

    Article  Google Scholar 

  16. R. Shieh: NASA TND-6448, NASA Langley Research Center, Hampton, VA, 1971.

  17. R. Shieh:J. Appl. Mech., 1975, vol. 42 (2), pp. 405–10.

    Google Scholar 

  18. R. Shieh:J. Appl. Mech., 1979, vol. 46, pp. 169–74.

    Google Scholar 

  19. U. Lee:AIAA J., 1985, vol. 23 (11), pp. 1783–90.

    Article  Google Scholar 

  20. K. Lücke:J. Appl. Phys., 1956, vol. 27 (12), pp. 1433–38.

    Article  Google Scholar 

  21. H. Deresiewicz:J. Acoust. Soc. Am., 1957, vol. 29 (2), pp. 204–09.

    Article  Google Scholar 

  22. W. Gillis: Technical Memorandum No. X-53722, George C. Marshall Space Flight Center, Huntsville, AL, 1968.

    Google Scholar 

  23. L. Goodman, C. Chang, and A. Robinson: Technical Documentary Report No. ASD-TDR-62-1031, Wright-Patterson Air Force Base, OH, 1962.

    Google Scholar 

  24. L. Landau and E. Lifshitz:Theory of Elasticity, Pergamon Press, New York, NY, 1986.

    Google Scholar 

  25. B. Armstrong:Geophysics, 1984, vol. 49 (7), pp. 1032–40.

    Article  Google Scholar 

  26. K. Milligan and V. Kinra:Mech. Res. Commun., 1993, vol. 20(2), pp. 137–42.

    Article  Google Scholar 

  27. J. Bishop and V. Kinra:J. Reinf. Plast. Compos., 1993, vol. 12, pp. 210–26.

    Article  Google Scholar 

  28. J. Bishop and V. Kinra: ASTM STP 1169, V.K. Kinra and A. Wolfenden, eds., ASTM, Philadelphia, PA 1992, pp. 457–70.

    Google Scholar 

  29. L. Brillouin:Wave Propagation in Periodic Structures, Dover, New York, NY, 1953, p. 70.

    Google Scholar 

  30. W. Little:Elasticity, Prentice-Hall, Englewood Cliffs, NJ, 1973.

    Google Scholar 

  31. M. Özişik:Heat Conduction, John Wiley and Sons, New York, NY, 1980, ch. 14.

    Google Scholar 

  32. M. Özişik:Heat Conduction, John Wiley and Sons, New York, NY, 1980, ch. 8.

    Google Scholar 

  33. W. Press, B. Flannery, S. Teukolsky, W. Vetterling:Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, United Kingdom, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation given in the Mechanics and Mechanisms of Material Damping Symposium, October 1993, in Pittsburgh, Pennsylvania, under the auspices of the SMD Physical Metallurgy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, J.E., Kinra, V.K. Analysis of elastothermodynamic damping in particle-reinforced metal-matrix composites. Metall Mater Trans A 26, 2773–2783 (1995). https://doi.org/10.1007/BF02669635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669635

Keywords

Navigation