Skip to main content
Log in

Anelastic relaxation in AI-4 Wt Pct Cu-AI2O3 fiber-reinforced composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In many industrial applications, like high precision weighing and positioning, the elastic and dimensional stability of materials is required at a nanometric scale. High-resolution laser interferometry and mechanical spectroscopy have been employed to measure low-temperature anelastic creep of the short-fiber-reinforced composite Al-4 wt pct Cu-Al2O3. The typical strain resolution of the laser interferometer is 10-10. Fiber reinforcement has been found to increase the dislocation density in the metal matrix; in parallel, damping and anelastic creep are enhanced. This behavior has been explained on the basis of the structure of interparticle dislocations and θ′ relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Willemin, M. Gietenbruch, and J. Gähwiler:Bull. Schweiz. Ges. Mikrotech. 1990, vol. 14, p. 21.

    Google Scholar 

  2. R.M. Magdowski:Ergebnisse der Werkstoff-Forschung: Moderne Stahle, P.J. Uggowitzer, ed., Schweizerische Akademie der Werkstoff-wissenschaften, Zürich, 1987, p. 107.

    Google Scholar 

  3. K.K. Chawla:Composite Materials, Springer-Verlag, New York, NY, 1987.

    Book  Google Scholar 

  4. H. Conrad and W.D. Robertson:Trans TMS-AIME, 1958, p. 503.

  5. L. Parrini and R. Schaller:J. Phys. IV, Suppl. J. Phys. III, 1993, vol. 3, p. 1745.

    Google Scholar 

  6. L. Parrini and R. Schaller:J. Alloys Compounds, 1994, vols. 211– 212, p. 402.

    Article  Google Scholar 

  7. S. Sgobba, H.U. Kûnzi, and B. Ilschner:Z. Metallkd., 1992, vol. 83, p. 572.

    Google Scholar 

  8. G. Cappleman, J. Watts, and T. Clyne:J. Mater. Sci., 1985, vol. 20, p. 2159.

    Article  Google Scholar 

  9. S. Sgobba: Ph.D. Thesis, Ecole Polytechnique Fédérale, Laussane, 1994.

    Google Scholar 

  10. A. Nowick and B. Berry:Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.

    Google Scholar 

  11. C. Hanauer, J. Merlin, J. Perez, P. Gobin, C. Castre and M. Wintenberger:Mem. Sci. Rev. Met., 1972, vol. LXIX 9, p. 653.

    Google Scholar 

  12. S. Sgobba, H.U. Künzi and B. Ilschner:Acta Metall, 1995, 43, p. 1171.

    Article  Google Scholar 

  13. S. Elangovan and M.R. Plichta:Scripta Metall, 1986, vol. 20, p. 575.

    Article  Google Scholar 

  14. S. Sgobba, I. Parrini, H.U. Künzi and B. Ilschner:J. Alloys Compounds, 1994, vols. 211-212, p. 608.

    Article  Google Scholar 

  15. B.S. Berry and A.S. Nowick: NACA Technical Note 4225, Washington, DC, 1958.

  16. G. Gagnon and F. Rézaï-Aria: private communication. DMX, Ecole Politechnique Federale de Lausanne, Switzerland, 1994.

  17. L. Parrini and R. SchallenScripta Metall, 1993, vol. 28, p. 763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgobba, S., Parrini, L., KÜNZI, HU. et al. Anelastic relaxation in AI-4 Wt Pct Cu-AI2O3 fiber-reinforced composites. Metall Mater Trans A 26, 2745–2749 (1995). https://doi.org/10.1007/BF02669430

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669430

Keywords

Navigation