Skip to main content
Log in

Microstructural development in undercooled lead- tin eutectic alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model was developed to predict micro structural development in lead—61.9 wt pct Sn (eutectic) alloys which were undercooled 5 to 25 K below their equilibrium freezing temperature prior to being preferentially nucleated. While the initial solidification velocity rapidly increases with increasing undercooling, the model predicts it to quickly decrease, prior to 10 pct solid formation, after which growth continues near the equilibrium temperature. Experimentally, and in accordance with the prediction, the eutectic emanated from the nucleation site with an initially fine spacing that increased with distance. However, in contrast to the model, the eutectic grew outward in a spokelike manner with each arm surrounded by a globular structure, this being attributed to the difficulty of lateral nucleation. Microstructural uniformity was further compromised by equiaxed eutectic grains which grew ahead of the advancing interface in the now only slightly undercooled liquid. Consequently, while containerless techniques may ensure sample purity and permit processing of high-temperature materials, development of a continuously fine and uniformly aligned microstructure cannot be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Undercooled Alloy Phases, E.W. Collings and C.C. Koch, eds., TMS, Warrendale, PA, 1986.

    Google Scholar 

  2. C.G. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 221–34.

    Article  Google Scholar 

  3. J.D. Hunt and J.P. Chilton:J. Inst. Met, 1963-64, vol. 92, pp. 21–25.

    Google Scholar 

  4. R.M. Jordan and J.D. Hunt:Metall. Trans., 1972, vol. 3, pp. 1385- 90.

    Article  Google Scholar 

  5. C.W. Haworth and B.F. Oliver:Trans. AIME, 1967, vol. 239, pp. 1129–36.

    Google Scholar 

  6. A. Moore and R. Elliott:J. Inst. Met., 1967, vol. 95, pp. 369–72.

    Google Scholar 

  7. G.L.F. Powell and G.A. Colligan:J. Inst. Met., 1969, vol. 97, pp. 319–20.

    Google Scholar 

  8. M.G. Chu, Y. Shiohara, and M.C. Flemings:Metall. Trans. A, 1984, vol. 15A, pp. 1303–10.

    Article  Google Scholar 

  9. H.C. de Groh III and V. Laxmanan:Metall. Trans. A, 1988, vol. 19A, pp. 2651–58.

    Google Scholar 

  10. H.C. de Groh III and V. Laxmanan:Solidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbaschian, and R.J. Bayuzick, eds., TMS, Warrendale, PA, 1988, pp. 229–42.

    Google Scholar 

  11. H.C. deGroh III: NASA Technical Memorandum 102023, May 1989.

  12. H.J. Fecht:Acta Metall. Mater, 1991, vol. 39 (5), pp. 1003–09.

    Article  Google Scholar 

  13. G.A. Chadwick:J. Inst. Met., 1962-63, vol. 91, p. 169.

    Google Scholar 

  14. H.E. Cline:Trans. AIME, 1967, vol. 239, pp. 1489–93.

    Google Scholar 

  15. H.E. Cline and J.D. Livingston:Trans. AIME, 1969, vol. 245, pp. 1987–92.

    Google Scholar 

  16. R. Trivedi, J.T. Mason, J.D. Verhoeven, and W. Kurz:Metall. Trans. A, 1991, vol. 22A, pp. 2523–33.

    Article  Google Scholar 

  17. H.J. Fecht and J.H. Perepezko:Metall. Trans. A, 1989, vol. 20A, pp. 785–94.

    Article  Google Scholar 

  18. H.J. Fecht, M.-X. Zhang, Y.A. Chang, and J.H. Perepezko:Metall. Trans. A, 1989, vol. 20A, pp. 795–803.

    Article  Google Scholar 

  19. ASM Metals Handbook, H. Baker, ed., ASM INTERNATIONAL, Metals Park, OH, 1992, vol. 3, p. 2.335.

  20. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward III:Trans. AIME, 1966, vol. 236, pp. 149–58.

    Google Scholar 

  21. J.D. Hunt:Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  Google Scholar 

  22. H. Fredriksson and A. Olsson:Mater. Sci. Technol, 1986, vol. 2, pp. 508–16.

    Article  Google Scholar 

  23. R. Grugel and W. Kurz:Metall. Trans. A, 1987, vol. 18A, pp. 1137- 42.

    Google Scholar 

  24. S. Kim and R.N. Grugel:Metall. Trans. A, 1992, vol. 23A, pp. 1807- 15.

    Google Scholar 

  25. P.J. Prescott and F.P. Incropera:Metall. Trans. B, 1991, vol. 22B, pp. 529–40.

    Article  Google Scholar 

  26. P. Ramachandrarao and K.S. Dubey:Int. J. Rapid Solid., 1992, vol. 7, pp. 191–99.

    Google Scholar 

  27. T. Carlberg and H. Fredriksson:J. Cryst. Growth, 1977, vol. 42, pp. 526–35.

    Article  Google Scholar 

  28. V. Seetharaman and R. Trivedi:Metall. Trans. A, 1988, vol. 19A, pp. 2955–64.

    Article  Google Scholar 

  29. R.A. Pratt and R.N. Grugel:Mater. Character., 1993, vol. 31 (4), pp. 225–31.

    Article  Google Scholar 

  30. V. De L. Davies:J. Inst. Met., 1963-64, vol. 92 (4), pp. 127–28. $

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Microgravity Solidification, Theory and Experimental Results” as a part of the 1993 TMS Fall meeting, October 17-21, 1993, Pittsburgh, PA, under the auspices of the TMS Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, F., Grugel, R.N. Microstructural development in undercooled lead- tin eutectic alloys. Metall Mater Trans A 26, 2699–2706 (1995). https://doi.org/10.1007/BF02669426

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669426

Keywords

Navigation