Skip to main content
Log in

Extended vacancy-vacancy liquid model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A quasicrystalline model of a binary liquid in which two sublattices containing randomly distributed vacancies is developedvia statistical thermodynamics. The relative partial molar quantities are obtained. The constraints imposed upon the adjustable model parameters to ensure that the Schottky constant increases with increasing temperature but never exceeds unity are developed, as well as the constraints entering upon application to a AC system forming a congruently melting, narrow homogeneity-range compound AC (s). The model is an extension of an earlier version for liquids and of analogous models for narrow homogeneity-range compounds, AC (s), in that the excess Gibbs energies of vacancy creation are cubic functions of the atomic fraction. The model is also an alternative to associated solution models which would assume a single equiatomic associated species. The model is then applied to systems of varying polarity but all forming a narrow homogeneityrange crystalline compound whose stoichiometric composition is 50 at. pct. Quantitatively good fits are obtained for the Hg-Te, Cd-Te, Zn-Te, and Pb-Te systems and, for the first three systems, are comparable to fits obtained with the associated solution model using the same experimental data. Quantitatively good fits are also obtained for the less polar In-Sb and Ga-Sb systems, and these are comparable to those obtained by us with a Margules-type model in which the enthalpy of mixing for the liquid is a quartic function of atom fraction and a quadratic function of temperature. Finally, the predictions for the enthalpy of mixing at temperatures above the present range of experimental data are given and discussed for the various systems and models. It appears the model given here is appropriate for the type of systems tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Brebrick:Metall. Trans. A, 1982, vol. 13A, pp. 1107–14.

    Article  Google Scholar 

  2. T.-C. Yu and R.F. Brebrick:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2331–40.

    Article  Google Scholar 

  3. R.F. Brebrick:J. Phys. Chem. Solids, 1979, vol. 40, pp. 177–82.

    Article  Google Scholar 

  4. J.A. Neider and R. Mead:Computer J., 1965, vol. 7, pp. 308–13.

    Article  Google Scholar 

  5. A.T. Dinsdale:CALPHAD, 1991, vol. 15 (4), pp. 317–425.

    Article  Google Scholar 

  6. T.-C. Yu and R.F. Brebrick:J. Phase Equil, 1992, vol. 13 (5), pp. 476–96.

    Article  Google Scholar 

  7. T.-C. Yu and R.F. Brebrick:J. Phase Equil, 1993, vol. 14 (3), pp. 271–72.

    Article  Google Scholar 

  8. S. Sugawara, T. Sato, and T. Minamiyama:Bull. Jpn. Soc. Mech. Eng., 1962, vol. 5, pp. 711–18.

    Article  Google Scholar 

  9. R.F. Brebrick:High Temp. Sci., 1988, vol. 25, pp. 187–97.

    Google Scholar 

  10. N. Davidson:Statistical Mechanics, McGraw-Hill, New York, NY, 1962, p. 331.

    Google Scholar 

  11. T. Leo Ngai, D. Marshall, R.C. Sharma, and Y.A. Chang:Monatsh. Chem., 1987, vol. 118, pp. 277–300.

    Article  Google Scholar 

  12. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.

    Google Scholar 

  13. R. Blachnik and R. Igel:Z. Naturforsch., 1974, vol. 29B, pp. 625–29.

    Google Scholar 

  14. Y. Huang and R.F. Brebrick:J. Electro. Soc, 1988, vol. 135 (2), pp. 487–96.

    Google Scholar 

  15. N. Moniri and C. Petot:Thermo. Acta, 1984, vol. 77, pp. 151–66.

    Article  Google Scholar 

  16. A.J. Strauss: Private communication of tabulated liquidus points, presented in graphical form in Harman,[81] 1967.

  17. R.F. Brebrick and A.J. Strauss:J. Phys. Chem. Solids, 1965, vol. 26, pp. 989–1002.

    Article  Google Scholar 

  18. T.C. Harman:J. Electron. Mater., 1980, vol. 9 (6), pp. 945–61.

    Article  Google Scholar 

  19. J. Steininger, A.J. Strauss, and R.F. Brebrick:J. Electrochem. Soc, 1970, vol. 11 (10), pp. 1305–09.

    Article  Google Scholar 

  20. M.R. Lorenz:J. Phys. Chem. Solids, 1962, vol. 23, pp. 939–47.

    Article  Google Scholar 

  21. B.M. Kulwicki: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 1963.

    Google Scholar 

  22. R.F. Brebrick:J. Electrochem. Soc, 1971, vol. 118 (12), pp. 2014- 20.

    Article  Google Scholar 

  23. C.-H. Su, P.-K. Liao, T. Tung, and R.F. Brebrick:High Temp. Sci., 1981, vol. 14, pp. 181–95.

    Google Scholar 

  24. D. de Nobel:Philips Res. Rep, 1959, vol. 14, pp. 361–99.

    Google Scholar 

  25. R.A. Reynolds, D.G. Stroud, and D.A. Stevenson:J. Electrochem. Soc, 1967, vol. 114 (12), pp. 1281–87.

    Article  Google Scholar 

  26. R.F. Brebrick:J. Electrochem. Soc, 1969, vol. 116 (9), pp. 1274–79.

    Article  Google Scholar 

  27. A.S. Jordan:Metall. Trans., 1970, vol. 1, pp. 239–49.

    Google Scholar 

  28. N. Moniri and C. Petot:J. Calorim. Anal. Thermo. (Preprint), 1978, vol. 9B:B24, pp. 195–201.

    Google Scholar 

  29. R. Blachnik and B. Gather:J. Less-Common Met, 1983, vol. 92, pp. 207–13.

    Article  Google Scholar 

  30. B. Fuglevicz:Poly. J. Chem., 1984, vol. 58, pp. 983–89.

    Google Scholar 

  31. R.N. Hall:J. Electrochem. Soc, 1963, vol. 110 (5), pp. 385–388.

    Article  Google Scholar 

  32. R.F. Brebrick and T.-C. Yu: 1995 Marquette University, Milwaukee, WI, unpublished results.

  33. Mats Hillert and L.I. Staffansson:Metall. Trans. B, 1975, vol. 6B, pp. 37–41.

    Article  Google Scholar 

  34. F. Guillemet, M. Hillert, B. Jansson, and B. Sundman:Metall. Trans. B, 1981, vol. 12B, pp. 745–54.

    Article  Google Scholar 

  35. M. Hillert, B. Jansson, B. Sundman, and J. Agren:Metall. Trans. A, 1985, vol. 16A, pp. 261–66.

    Article  Google Scholar 

  36. B. Sundman and J. Agren:J. Phys. Chem. Solids, 1981, vol. 42, pp. 297–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brebrick, R.F., Yu, TC. Extended vacancy-vacancy liquid model. Metall Mater Trans A 26, 2597–2610 (1995). https://doi.org/10.1007/BF02669417

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669417

Keywords

Navigation