Metallurgical Transactions

, Volume 4, Issue 10, pp 2357–2361 | Cite as

A study of intergranular fracture in iron using auger spectroscopy

  • B. D. Powell
  • H. J. Westwood
  • D. M. R. Taplin
  • H. Mykura
Machanical Behavior

Abstract

Low temperature impact tests on three fairly pure irons have shown that the propensity for intergranular fracture is largely independent of prior heat treatment. Furthermore, the effects of carbon and oxygen contents and carbon : oxygen ratio were found to be opposite to those previously reported. Examination of fracture surfaces by Auger Spectroscopy showed that sulfur was strongly segregated to grain boundaries but showed no evidence of oxygen segregation. The fracture behavior of specimens previously tested in creep or high temperature fatigue differed from that of untested specimens in that fracture was predominantly by transgranular cleavage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Low and R. G. Feustel:Acta Met., 1953, vol. 1, pp. 185–92.CrossRefGoogle Scholar
  2. 2.
    W. P. Rees and B. E. Hopkins:J. Iron Steel Inst., 1952, vol. 172, pp. 403–09.Google Scholar
  3. 3.
    C. J. McMahon:Acta Met., 1966, vol. 14, pp. 839–45.CrossRefGoogle Scholar
  4. 4.
    J. R. Rellick and C. J. McMahon, Jr.:Met. Trans., 1970, vol. 1, pp. 929–37.Google Scholar
  5. 5.
    P. Jolly and C. Goux:Mem. Sci. Rev. Met., 1969, vol. 66, pp. 605–17.Google Scholar
  6. 6.
    R. Honda and H. Taga:Met. Sci. J., 1968, vol. 2, pp. 172–76.CrossRefGoogle Scholar
  7. 7.
    E. D. Hondros: in “Interfaces Conference, Melbourne 1969”, pp. 77–100, R. C. Gifkins, ed., Publ. Butterworth, Sydney, 1969.Google Scholar
  8. 8.
    H. R. Tipler and D. McLean:Met. Sci. J., 1970, vol. 4, pp. 103–07.Google Scholar
  9. 9.
    P. W. Palmberg and H. L. Marcus:Trans. ASM, 1969, vol. 62, pp. 1016–18.Google Scholar
  10. 10.
    H. L. Marcus and P. W. Palmberg:Trans. TMS-AIME, 1969, vol. 245, pp. 1664–66.Google Scholar
  11. 11.
    D. M. R. Taplin and A. L. Wingrove:J. Mater. Sci., 1969, vol. 4, pp. 789–96.CrossRefGoogle Scholar
  12. 12.
    R. E. Weber and W. T. Peria:J. Appl Phys., 1967, vol. 38, pp. 4355–58.CrossRefGoogle Scholar
  13. 13.
    P. W. Palmberg, G. K. Bohn, and J. C. Tracy:Appl. Phys. Lett., 1969, vol. 15, pp. 254–55.CrossRefGoogle Scholar
  14. 14.
    T. W. Haas, J. T. Grant, and G. J. Dooley:Phys. Rev. B, 1970, vol. 1, pp. 1449–59.CrossRefGoogle Scholar
  15. 15.
    E. D. Hondros and M. P. Seah:Scr. Met., 1972, vol. 6, pp. 1007–12.CrossRefGoogle Scholar
  16. 16.
    J. R. Rellick, C. J. McMahon, Jr., and H. L. Marcus:Met. Trans., 1971, vol. 2, pp. 342–43.CrossRefGoogle Scholar
  17. 17.
    C. J. Beevers and B. Kirby: private communication, University of Birmingham, Department of Physical Metallurgy, Birmingham, England.Google Scholar
  18. 18.
    D. S. Tomalin and D. F. Stein:Trans. TMS-AIME, 1965, vol. 233, pp. 2056–62.Google Scholar

Copyright information

© American Society for Metals, The Melallurgical Society of AIME 1973

Authors and Affiliations

  • B. D. Powell
    • 1
  • H. J. Westwood
    • 3
  • D. M. R. Taplin
    • 4
  • H. Mykura
    • 2
  1. 1.Department of PhysicsUniversity of WarwickCoventryEngland
  2. 2.School of Materials ScienceUniversity of WarwickCoventryEngland
  3. 3.Dobson Research Labs.Ontario HydroCanada
  4. 4.Department of Mechanical EngineeringUniversity of WaterlooOntarioCanada

Personalised recommendations