Skip to main content
Log in

A study of the chemical composition of grain boundaries and creep cavity surfaces in a Cu-Sb alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Chemical compositions of grain boundaries and creep cavity surfaces in Cu + 0.5 at. pct Sb have been measured quantitatively using Auger Electron Spectroscopy. The grain boundary enrichment ratio for antimony due to segregation was found to be greater than 16. The distribution of antimony on the fracture surface was very homogeneous, with concentrations of about 7 at. pct on the grain boundaries and 9.2 at. pct on the cavity surfaces. The ratio of grain boundary segregation to surface segregation was lower than expected and possible reasons for this discrepancy are discussed. Other impurities (C, S, and O) were more inhomogeneously distributed. Carbon was found mainly on the walls of the cavities and on the grain boundaries while sulfur preferentially concentrated at steps on the cavity surfaces. The distribution of oxygen is closely related to the morphology of the fracture surface. It is concluded that oxygen arises from contamination of intergranular microcracks which extend to the surface of the sample and were exposed to the atmosphere. The highly reproducible Auger spectra clearly indicates that all other impurities were present in the material prior to microanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Tipler and D. McLean:Metal Sci., 1970, vol. 4, p. 103.

    CAS  Google Scholar 

  2. M.P. Seah:Phil. Trans. Roy. Soc. (A), 1975, vol. 295, p. 265.

    Article  Google Scholar 

  3. R. Viswanathan:Metall. Trans. A, 1975, vol. 6A, p. 1135.

    CAS  Google Scholar 

  4. C.L. White and R.A. Padgett:Scripta Met., 1982, vol. 16, p. 461.

    Article  CAS  Google Scholar 

  5. D. F. Roan and B. B. Seth: in “Ductility and Toughness Considerations in Elevated Temperature Service”, ASME, New York, NY, G. V. Smith, ed., 1979, p. 79.

    Google Scholar 

  6. A.J. Perry:J. Mat. Sci., 1974, vol. 9, p. 1016.

    Article  CAS  Google Scholar 

  7. M.F. Ashby, C. Gandhi, and D. M. R. Taplin:Acta Met., 1979, vol. 27, p. 699.

    Article  CAS  Google Scholar 

  8. E.D. Hondros and M.P. Seah:lnt’l Met. Rev., Dec. 1977, p. 262.

  9. H. Ibach: in “Electron Spectroscopy for Surface Analysis (Topics in current physics; vol. 4)”, Springer-Verlag, Berlin, H. Ibach, ed., 1977, p. 1.

    Google Scholar 

  10. T. Watanabe, S. Kitamura, and S. Karashima:Acta Met., 1980, vol. 28, p. 455.

    Article  CAS  Google Scholar 

  11. T. Watanabe, T. Murakami, and S. Karashima:Scripta Met., 1978, vol. 12, p. 361.

    Article  CAS  Google Scholar 

  12. T. Shinoda and T. Makamura:Acta Met., 1981, vol. 29, p. 1631.

    Article  CAS  Google Scholar 

  13. M. C. Inman, D. McLean, and H. P. Tipler:Pro. R. Soc. Lon., 1963, vol. 273A, p. 538.

    Article  Google Scholar 

  14. D. McLean:J. Inst. Met., 1952-53, vol. 81, p. 121.

    CAS  Google Scholar 

  15. L.M.T. Hopkin:J. Inst. Met., 1955-56, vol. 84, p. 102.

    Google Scholar 

  16. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, and R. E. Weber:Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Eden Prairie, MN, 1976, p. 1.

    Google Scholar 

  17. T. H. Chuang, W. Gust, L. A. Heldt, M. B. Hintz, S. Hofmann, R. Lucic, and B. Predel:Scripta Met., 1982, vol. 16, p. 1437.

    Article  CAS  Google Scholar 

  18. M.P. Seah and E.D. Hondros:Pro.R. Soc, 1973, vol. 335A, p. 191.

    Article  Google Scholar 

  19. T.G. Nieh: Ph.D. Dissertation, Stanford University, 1981.

  20. C. J. Simpson, W. C. Wingard, and K. T. Aust: inGrain Boundary Structure and Property, Academic Press, London, G. A. Chadwick and D. A. Smith, eds., 1976, p. 201.

    Google Scholar 

  21. S. Nelson, D.J. Mazey, and R. Barnes:Phil. Mag., 1965, vol. 11, p. 91.

    Article  CAS  Google Scholar 

  22. D. McLean:Grain Boundaries in Metals, Clarendon Press, Oxford, 1957, p. 116.

    Google Scholar 

  23. S. Brunauer, P. H. Emmett, and E. Teller:J. Am. Chem. Soc, 1938, vol. 90, p. 309.

    Article  Google Scholar 

  24. B. D. Powell and D. P. Woodruff:Phil. Mag., 1976, vol. 34, p. 169.

    Article  CAS  Google Scholar 

  25. H. Gleiter and B. Chalmers:Prog, in Mat’l. Sci., 1972, vol. 16, p. 42.

    Google Scholar 

  26. E. D. Hondros: inInterfaces, Butterworths, London, R. C. Gifkins, ed., 1969, p. 77.

    Google Scholar 

  27. M.P. Seah and C. Lea:Phil. Mag., 1975, vol. 31, p. 627.

    Article  CAS  Google Scholar 

  28. J.O. Stiegler, K. Farrell, B.T. M. Loh, and H.E. McCoy:Trans. ASM, 1967, vol. 60, p. 494.

    CAS  Google Scholar 

  29. A. L. Wingrove and D.M.R. Taplin:J. Mat. Sci., 1969, vol. 4, p. 789.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K.S., Joshi, A. & Nix, W.D. A study of the chemical composition of grain boundaries and creep cavity surfaces in a Cu-Sb alloy. Metall Trans A 14, 2447–2454 (1983). https://doi.org/10.1007/BF02668886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668886

Keywords

Navigation