Plant Molecular Biology Reporter

, Volume 8, Issue 1, pp 40–49 | Cite as

Medicago truncatula, a model plant for studying the molecular genetics of theRhizobium-legume symbiosis

  • David G. Barker
  • Sylvie Bianchi
  • François Blondon
  • Yvette Dattée
  • Gérard Duc
  • Sadi Essad
  • Pascal Flament
  • Philippe Gallusci
  • Gérard Génier
  • Pierre Guy
  • Xavier Muel
  • Jacques Tourneur
  • Jean Dénarié
  • Thierry Huguet
Genetic Resource

Abstract

Medicago truncatula has all the characteristics required for a concerted analysis of nitrogen-fixing symbiosis withRhizobium using the tools of molecular biology, cellular biology and genetics.M. truncatula is a diploid and autogamous plant has a relatively small genome, and preliminary molecular analysis suggests that allelic heterozygosity is minimal compared with the cross-fertilising tetraploid alfalfa (Medicago sativa). TheM. truncatula cultivar Jemalong is nodulated by theRhizobium meliloti strain 2011, which has already served to define many of the bacterial genes involved in symbiosis with alfalfa. A genotype of Jemalong has been identified which can be regenerated after transformation byAgrobacterium, thus allowing the analysis ofin-vitro-modified genes in an homologous transgenic system. Finally, by virtue of the diploid, self-fertilising and genetically homogeneous character ofM. truncatula, it should be relatively straightforward to screen for recessive mutations in symbiotic genes, to carry out genetic analysis, and to construct an RFLP map for this plant.

Keywords

symbiotic nitrogen fixation legume Medicago truncatula 

Abbreviations

RFLP

restriction fragment length polymorphism

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, K. and P.K. Gupta, 1983. Cytological studies in the genusMedicago Linn. Cytologia 48:781–793.Google Scholar
  2. Amor, R.L. 1965. Barrel medic (Medicago tribuloïdes Desr.) in the Australian wheat belt. J. Aust. Inst. Agric. Sci. 31:25–35.Google Scholar
  3. Barker, D.G., P. Gallusci, V. Lullien, H. Khan, M. Ghérardi and T. Huguet. 1988. Identification of two groups of leghemoglobin genes in alfalfa (Medicago sativa) and a study of their expression during root nodule development. Plant Mol. Biol. 11:761–772.CrossRefGoogle Scholar
  4. Bennett, M.D. and J.B. Smith. 1976. Nuclear DNA amounts in angiosperms. Phil. Trans. Roy. Soc. Lond. 274:224–274.Google Scholar
  5. Bennett, M.D., J.B. Smith and J.S. Heslop-Harrison. 1982. Nuclear DNA amounts in angiosperms. Proc. R. Soc. London B 216:179–199.CrossRefGoogle Scholar
  6. Bonierbale, M.W., R.L. Plaisted and S.D. Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103.PubMedGoogle Scholar
  7. Crawford, E.J., A.W.H. Lake and K.G. Boyce. 1989. Breeding annualMedicago species for semi-arid conditions in Southern Australia. Adv. Agron. 42:399–437.CrossRefGoogle Scholar
  8. Deak, M., G.B. Kiss, C. Koncz and D. Dudits. 1986. Transformation ofMedicago byAgrobacterium-mediated gene transfer. Plant Cell Rep. 5:97–100.CrossRefGoogle Scholar
  9. Delauney, A.J. and D.P.S. Verma. 1988. Cloned nodulin genes for symbiotic nitrogen fixation. Plant Mol. Biol. Rep. 6:279–285.Google Scholar
  10. Essad, S. 1987. Sur la relation prossible d'une unité de variation saltatoire de l'ADN nucléaire, le nucléon, et des chromosomes B dans le genreMedicago L. C.R. Acad. Sci. Paris 305 série III:307–310.Google Scholar
  11. Essad S. 1988. Mise en évidence de variations saltatoire de l'ADN nucléaire dans et entre les espèces du genreMedicago L. Genome 30:825–834.Google Scholar
  12. Franssen, H.J., J-P. Nap, T. Cloudemans, W. Stiekema, H. van Dam, F. Govers, J. Louwerse, A. van Kammen and T. Bisseling. 1987. Characterisation of cDNA for nodulin-75 of soybean: A gene product involved in early stages of root nodule development. Proc. Natl. Acad. Sci. USA 84:4495–4499.PubMedCrossRefGoogle Scholar
  13. Gresshoff, P.M., D.A. Day, A.C. Delves, A.P. Mathews, J.E. Olsson, G. Dean Price, K.A. Schuller and B.J. Carroll 1986. Plant host genetics of nodulation and symbiotic nitrogen fixation in pea and soybean. In:Nitrogen Fixation Research Progress. (eds. H.J. Evans, P.J. Bottomley, W.E. Newton), pp 19–25, Nijhoff, Amsterdam.Google Scholar
  14. Jorgensen, J.E., J. Stougaard, A. Marcker, and K.A. Marcker. 1988. Root nodule specific gene regulation: Analysis of the soybean nodulin N23 gene promoter in heterologous symbiotic systems. Nucl. Acids Res. 16:39–50.PubMedCrossRefGoogle Scholar
  15. Lesins, K.A. and I. Lesins. 1979. GenusMedicago (Leguminosae): A taxogenetic study. Dr. W. Junk, The Hague.Google Scholar
  16. Long, S.R. 1989.Rhizobium-legume nodulation: Life together in the underground. Cell 56:203–214.PubMedCrossRefGoogle Scholar
  17. Lullien, V., D.G. Barker, P. de Lajudie and T. Huguet. 1987. Plant gene expression in effective and ineffective root nodules of alfalfa (Medicago sativa). Plant Mol. Biol. 9:469–478.CrossRefGoogle Scholar
  18. Meyerowitz, E.M. and R.E. Pruitt. 1985.Arabidopsis thaliana and plant molecular genetics. Science 229:1214–1218.CrossRefPubMedGoogle Scholar
  19. Nolan, K.E., R.J. Rose and J.R. Gorst. 1989. Regeneration ofMedicago truncatula from tissue culture: Increased somatic embryogenesis using explants from regenerated plants. Plant Cell Rep. 8:278–281.CrossRefGoogle Scholar
  20. Petit, A., J. Stougaard, A. Kühle, K.A. Marcker and J. Tempé. 1987. Transformation and regeneration of the legumeLotus corniculatus: A system for molecular studies of symbiotic nitrogen fixation. Mol. Gen. Genet. 207:245–250.CrossRefGoogle Scholar
  21. Rosenberg, C., P. Boistard, J. Dénarié, F. Casse-Delbart. 1981. Genes controlling early and late functions in symbiosis are located on a megaplasmid inRhizobium meliloti. Mol. Gen. Genet. 184:326–333.PubMedGoogle Scholar
  22. Spano, L., D. Mariotti, M. Pezzotti, F. Damiani and S. Arcioni. 1987. Hairy root transformation in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 73:523–530.CrossRefGoogle Scholar
  23. Sukhapinda, K., R. Spivey and E.A. Shahin. 1987. Ri-plasmid as a helper for introducing vector DNA into alfalfa plants. Plant Mol. Biol. 8:209–216.CrossRefGoogle Scholar
  24. Verma, D.P.S. and K. Nadler. 1984. Legume-Rhizobium symbiosis: Host's point of view. In:Genes Involved in Microbe-Plant Interactions. Plant Gene Research Vol.1. (eds D.P.S. Verma and T. Hohn), pp 57–93 Springer-Verlag Wien New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • David G. Barker
    • 1
  • Sylvie Bianchi
    • 2
  • François Blondon
    • 3
  • Yvette Dattée
    • 2
  • Gérard Duc
    • 4
  • Sadi Essad
    • 5
  • Pascal Flament
    • 2
  • Philippe Gallusci
    • 1
  • Gérard Génier
    • 6
  • Pierre Guy
    • 6
  • Xavier Muel
    • 7
  • Jacques Tourneur
    • 7
  • Jean Dénarié
    • 1
  • Thierry Huguet
    • 1
  1. 1.Laboratoire de Biologie Moléculaire des Relations Plantes-MicroorganismesINRA-CNRSCastanet-Tolosan CedexFrance
  2. 2.Laboratoire d'Amélioration des PlantesUniversité de Paris-SudOrsay CedexFrance
  3. 3.Laboratoire du PhytotronCNRSGif sur YvetteFrance
  4. 4.Station de Génétique et d'Amélioration des PlantesINRA, BV 1540Dijon CedexFrance
  5. 5.Station de Génétique et d'Amélioration des PlantesINRAVersailles CedexFrance
  6. 6.Station d'Amélioration des Plantes FourragéresINRALusignanFrance
  7. 7.Laboratoire de Biologie CellulaireINRAVersailles CedexFrance

Personalised recommendations