Skip to main content
Log in

1H and13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Rheumatic diseases are accompanied by a progressive destruction of the cartilage layer of the joints. Despite the frequency of the disease, degradation mechanisms are not yet understood and methods for early diagnosis are not available. Although some information on pathogenesis could be obtained from the analysis of degradation products of cartilage supernatants, the most direct information on degradation processes would come from the native cartilage as such. We have used1H as well as13C HR-MAS (high resolution magic angle spinning) NMR spectroscopy to obtain suitable line-widths of NMR resonances of native cartilage. ID and 2D NMR spectra of native cartilage were compared with those of enzymatically-treated (collagenase and pa pain) samples. In the1H NMR spectra of native cartilage, resonances of polysaccharides, lipids and a few amino acids of collagen were detectable, whereas the13C NMR spectra primarily indicated the presence of chondroitin sulfate. Treatment with papain resulted only in small changes in the1H NMR spectrum, whereas a clear diminution of all resonances was detectable in the13C NMR spectra. On the other hand, treatment with collagenase caused the formation of peptides with an amino acid composition typical for collagen (glycine, proline, hydroxyproline and lysine). It is concluded that the HR-MAS NMR spectra of cartilage may be of significance for the investigation of cartilage degradation since they allow the fast evaluation of cartilage composition and only very small amounts of sample are required. © 2001 Elsevier Science B.V. All rights reserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flugge LA. Miller-Deist L, Petillo PA. Towards a molecular understanding of arthritis. Chem Biol 1999;6:R157–66.

    Article  PubMed  CAS  Google Scholar 

  2. Grootveld M, Henderson EB, Farrell A. Blake DR. Parkes HG, Haycock P. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Bioehem J 1991:273:459–67.

    CAS  Google Scholar 

  3. Damyanovich AZ, Staples JR, Marshall KW. ’H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthritis Cartilage 1999;7:165–72.

    Article  PubMed  CAS  Google Scholar 

  4. Schiller J, Arnhold K, Sonntag K, Arnold K. NMR studies on human, pathologically changed synovial fluid: Role of hypochlorous acid. Magn Reson Med 1996:35:848–53.

    Article  PubMed  CAS  Google Scholar 

  5. Schiller J. Arnhold J, Arnold K. NMR studies of the action of hypochlorous acid on native pig articular cartilage. Eur J Bioehem 1995;233:672–6.

    Article  CAS  Google Scholar 

  6. Schiller J. Arnhold J, Schwinn J, Sprinz H, Brede O, Arnold K. Reactivity of cartilage and selected carbohydrates with hydroxyl radicals — An NMR study to detect degradation products. Free Radie Res 1998:28:215–28.

    CAS  Google Scholar 

  7. Schiller J, Benard S. Reichl S, Arnhold J, Arnold K. Cartilage degradation by stimulated human neutrophils: Reactive oxygen species decrease markedly the activity of proteolytic enzymes. Chem Biol 2000:7:557–68.

    Article  PubMed  CAS  Google Scholar 

  8. Schiller J, Arnhold J, Arnold K. Nuclear magnetic resonance and mass spectrometric studies on the action of proteases on pig articular cartilage. Z Naturforsch 1998:53c: 1072–80.

    Google Scholar 

  9. Tomlins AM, Foxall PJD, Lindon JC, Lynch MJ, Spraul M. Everett JR, Nicholson JK. High resolution magic angle spinning1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues. Anal Commun 1998:35:113–5.

    Article  CAS  Google Scholar 

  10. Jelicks LA, Paul PK, O’Byrne E, Gupta RK. Hydrogen-1, sodium-23, and carbon-13 MR spectroscopy of cartilage degradation in vitro. J Magn Reson Imaging 1993;3:565–8.

    Article  PubMed  CAS  Google Scholar 

  11. Naji L, Kaufmann J, Huster D, Schiller J, Arnold K.13C NMR relaxation studies on cartilage and cartilage components. Carbohydr Res 2000;327:439–46.

    Article  PubMed  CAS  Google Scholar 

  12. Saito H, Yokoi M. A13C NMR study on collagens in the solid state: Hydration/Dehydration-induced conformational change of collagen and detection of internal motions. J Bioehem 1992;lll:376–82.

    Google Scholar 

  13. Torchia DA. Hasson MA, Hascall VC. Investigation of molecular motion of proteoglycans in cartilage by13C magnetic resonance. J Biol Chem 1977:252:3617–25.

    PubMed  CAS  Google Scholar 

  14. Garnero P, Rousseau JC, Delmas PD. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum 2000:43:953–68.

    Article  PubMed  CAS  Google Scholar 

  15. Tschesche H. Human neutrophil collagenase. Methods Enzymol 1995:248:431–49.

    Article  PubMed  CAS  Google Scholar 

  16. Bentley G. Papain-induced degenerative arthritis of the hip in rabbits. J Bone Joint Surg 1971:53:324–37.

    CAS  Google Scholar 

  17. Kalinowski HO. Berger S, Braun S. 150 and more basic NMR experiment. 2nd edition Stuttgart, Wiley-VCH, 1998.

    Google Scholar 

  18. Agar NS. Rae CD, Chapman BE, Kuchel PW. ’H NMR spectroscopic survey of plasma and erythrocytes from selected marsupials and domestic animals of Australia. Comp Bioehem Physiol 1991:99B:575–97.

    Google Scholar 

  19. Mucci A, Schenetti L, Volpi N.1H and13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr Polym 2000:41:37–45.

    Article  CAS  Google Scholar 

  20. Blight EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Bioehem Physiol 1959:37:911–7.

    Google Scholar 

  21. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Bioehem 1999:267:46–56.

    Article  CAS  Google Scholar 

  22. Schiller J, Arnold K. Mass spectrometry in structural biology. In: Meyers RA. editor. Encyclopedia of Analytical Chemistry. 1st edition Chichester: Wiley. 2000. p. 559–585.

    Google Scholar 

  23. Arnhold J, Panasenko OM. Schiller J, Vladimirov YA. Arnold K. The action of hypochlorous acid on phosphatidylcholine liposomes in dependence on the content of double bonds. Stoichiometry and NMR analysis. Chem Phys Lipids 1995:78:55–64.

    Article  PubMed  CAS  Google Scholar 

  24. Gervais M. Commenges G, Laussac JP. ID and 2D-NMR study of a nonapeptide. a fragment of collagen, in its free state and complexed with aluminium (III). Magn Reson Chem 1987:25:594–9.

    Article  CAS  Google Scholar 

  25. Schiller J, Arnhold J, Glander HJ, Arnold K. Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy-effects of freezing and thawing. Chem Phys Lipids 2000:106:145–56.

    Article  PubMed  CAS  Google Scholar 

  26. Petkovic M, Schiller J. Müller M, Benard S, Reichl S, Arnold K, Arnhold J. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: Phosphatidylcholine prevents the detection of further species. Anal Bioehem. 2001:289:202–216.

    Article  CAS  Google Scholar 

  27. Hamer GK, Periin AS. A13C NMR spectral study of chondroitin sulfates A, B, and C: Evidence of heterogeneity. Carbohydr Res 1976:49:37–48.

    Article  PubMed  CAS  Google Scholar 

  28. Bociek SM, Darke AH, Welti D, Rees DA. The13C-NMR spectra of hyaluronate and chondroitin sulphates. Eur J Bioehem 1980:109:447–56.

    Article  CAS  Google Scholar 

  29. Alexander CM, Werb Z. Extracellular matrix degradation. In: Hay ED, editor. Cell biology of extracellular matrix, 2nd edition New-York: Plenum Press, 1991.

    Google Scholar 

  30. Keiser H, Greenwald RA, Feinstein G, Janoff A. Degradation of cartilage proteoglycan by human leukocyte granule neutral protease — a model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J Clin Invest 1976;57:625–32.

    PubMed  CAS  Google Scholar 

  31. Bonner WM, Jonsson H, Malanos C, Bryant M. Changes in the lipids of human articular cartilage with age. Arthritis Rheum 1975:18:461–73.

    Article  PubMed  CAS  Google Scholar 

  32. Ebert G. Biopolymere, 1st edition Stuttgart: B.G. Teubner Verlag, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, J., Naji, L., Huster, D. et al. 1H and13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage. MAGMA 13, 19–27 (2001). https://doi.org/10.1007/BF02668647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668647

Keywords

Navigation