Skip to main content
Log in

Cloning of plant cDNAs encoding calmodulin-binding proteins using35S-labeled recombinant calmodulin as a probe

  • Protocol
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Radiolabelled calmodulin has previously been used to screen cDNA expression libraries to isolate calmodulin-binding proteins. We have modified this technique for the isolation of plant calmodulin-binding proteins. [35S]-methionine was used instead of the inorganic [35S]-sulfate, or125I used in previous methods. In addition, theE. coli pET expression system was chosen to obtain high levels of recombinant calmodulin at the time of labelling. The procedure thus takes into account both the specific activity of the probe and the amount of protein necessary for screening a large number of filters. Here we describe in detail a procedure for the production and purification of [35S]-recombinant calmodulin and the use of the radiolabelled protein as a probe to screen plant cDNA expression libraries. The [35S]-labeled calmodulin probe easily detects the λICM-1 phage encoding a partial mouse calmodulin-dependent protein kinase II that was previously isolated using a [125I]-calmodulin probe (Sikela and Hahn, 1987). Subsequently, a tobacco root cDNA expression library was screened and a positive clone encoding a calcium-dependent calmodulin-binding protein was isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

calmodulin

IPTG:

isopropyl-β-D-thiogalactopyranoside

References

  • Asselin, J., S. Phaneuf, D.M. Watterson and J. Haiech. 1989. Metabolically35S-labeled recombinant calmodulin as a ligand for detection of calmodulin- binding proteins. Anal. Biochem. 178:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Braam, J. and R.W. Davis. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes inArabidopsis. Cell 60:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A.K. 1983.Intracellular Calcium-Its Universal Role as Regulator (Wiley, Chichester).

    Google Scholar 

  • Cohen, P. 1988. The calmodulin-dependent multiprotein kinase. In:Molecular Aspects of Cellular Regulation. Volume 5:Calmodulin. (eds. P. Cohen and C.B. Klee), pp. 145–193. Elsevier, Amsterdam.

    Google Scholar 

  • Colbran, R.J., M. Schworer, Y. Hashimoto, Y-L. Fong, D.P. Rich, M.K. Smith and T.R. Soderling. 1989. Calcium/calmodulin-dependent protein kinase II. Biochem. J. 258:313–325.

    PubMed  CAS  Google Scholar 

  • Hepler, P.K. and R.O. Wayne. 1985. Calcium and plant development. Ann. Rev. Plant Physiol. 36:397–439.

    CAS  Google Scholar 

  • Knight, M.R., A.K. Campbell, S.M. Smith and A.J. Trewavas. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Lukas, T.J., D.B. Iverson, M. Schleicher and D.M. Watterson. 1984. Structural characterization of a higher plant calmodulin. Plant Physiol. 75:788–795.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., E.F. Fritsch and J. Sambrook. 1982.Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory.

  • Marme, D. 1989. The role of calcium and calmodulin in signal transduction. In:Second Messengers in Plant Growth and Development. (eds. W.F. Boss and D.J. Morre), pp. 57–80. Alan R Liss, Inc., New York.

    Google Scholar 

  • Means, A.R. 1988. Molecular mechanisms of action of calmodulin. Recent Prog Horm. Res. 44:223–286.

    PubMed  CAS  Google Scholar 

  • Pausch, M., H.D. Kaim, R. Kunisawa, A. Admon and J. Thorner. 1991. Multiple Ca2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote. EMBO J. 10:1511–1522.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B.W. and A.S.N. Reddy. 1987. Calcium messenger system in plants. CRC Crit. Rev. Plant Sci. 6:47–103.

    PubMed  CAS  Google Scholar 

  • Rubin, R.P., G.B. Weiss and J.W. Putney. 1985.Calcium in Biological Systems. Plenum Press, New York, London.

    Google Scholar 

  • Sikela, J.M. and W.E. Hahn. 1987. Screening an expression library with a ligand probe: Isolation and sequence of a cDNA corresponding to a brain calmodulin-binding protein. Proc. Natl. Acad. Sci. USA 84:3038–3042.

    Article  PubMed  CAS  Google Scholar 

  • Studier, F.W., A.H. Rosenberg, J.J. Dunn and J.W. Dubendorf. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology 185:60–89.

    Article  PubMed  CAS  Google Scholar 

  • Trewavas, A.J. 1986.Molecular and Cellular Aspects of Calcium in Plant Development. Plenum Press, New York.

    Google Scholar 

  • Widada, J.S., J. Asselin, S. Colote, J. Marti, C. Ferraz, G. Trave, J. Haiech and J.-P. Liautard. 1989. Cloning and deletion mutagenesis using direct protein-protein interaction on an expression vector; identification of the calmodulin binding domain of alpha-fodrin. J. Mol. Biol. 205:455–458.

    Article  CAS  Google Scholar 

  • Zielinski E., V. Ling and I. Perera. 1990. Isolation of cloned cDNA and genomic DNA sequences encoding calmodulin and calmodulin-like proteins from barley andArabidopsis. In:Current Topics in Plant Biochemistry and Physiology. (eds. D.D. Randall and D.G. Blevins), pp. 141–152. University of Missouri-Columbia.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromm, H., Chua, NH. Cloning of plant cDNAs encoding calmodulin-binding proteins using35S-labeled recombinant calmodulin as a probe. Plant Mol Biol Rep 10, 199–206 (1992). https://doi.org/10.1007/BF02668347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668347

Key words

Navigation