Skip to main content
Log in

Serial 1H-MRS in relapsing-remitting multiple sclerosis: effects of interferon-β therapy on absolute metabolite concentrations

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

To assess the applicability of magnetic resonance spectroscopy (MRS) for long-term follow-up of neurological diseases a longitudinal 1H-MRS study at 3 T was carried out on ten patients having relapsing-remitting multiple sclerosis (MS) who, after baseline examination, received interferon-β (IFN) lb. At 8–20 examinations within up to 34 months absolute concentrations ofN-acetylaspartate (NAA), total creatine (tG), and choline-containing compounds (tCho) were determined in a large non-enhancing lesion and contralateral normal appearing white matter (NAWM). MR spectra were analyzed using a novel time domain-frequency domain method including non-parametric background characterization. For comparison at baseline, ten healthy controls were examined. The concentrations of tCho and tCr were found to be higher in MS brain than in control brain. Besides a non-significantly lower NAA concentration in lesions there were no concentration differences between lesions and NAWM. Over the follow-up period the measured metabolite concentrations exhibited a high variability. Most concentrations remained within this scatter, and statistical tests revealed significant fluctuations in the levels of metabolites in one case only. This stability of the metabolite concentrations over time might result from IFN therapy as for the spontaneous course of relapsing-remitting MS decreasing metabolite (NAA/tCr) ratios have been reported. The results further suggest that future treatment trials intending to use metabolite concentrations as a secondary outcome indicator use even longer observation periods and, besides group analysis of large cohorts, investigate the time behavior of selected single cases. The biochemical abnormalities found in NAWM emphasize the importance of analyzing both lesion and NAWM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simmons A, Smail M, Moore E, Williams SCR. Serial precision of metabolite peak area ratios and water referenced metabolite peak areas in proton MR spectroscopy of the human brain. Magn Reson Imag 1998;16:319–30.

    Article  CAS  Google Scholar 

  2. Brooks WM, Friedman SD, Stidley CA. Reproducibility of 1 H-MRS in vivo. Magn Reson Med 1999;41:193–7.

    Article  PubMed  CAS  Google Scholar 

  3. Schirmer T, Auer D. On the reliability of quantitative clinical MR spectroscopy of the human brain. NMR Biomed 2000;13:28–36.

    Article  PubMed  CAS  Google Scholar 

  4. De Stefano N, Matthews PM, Ford B, Genge A, Karpati G, Arnold DL. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology 1995;45:1193–8.

    PubMed  Google Scholar 

  5. Preul MC, Caramanos Z, Villemure JG. Shenoudy G, LeBlanc R, Langleben A, Arnold DL. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery 2000;46:306–18.

    Article  PubMed  CAS  Google Scholar 

  6. De Stefano N, Narayanan S, Matthews PM, Mortilla M, Dotti MT, Federico A, Arnold DL. Proton MR spectroscopy to assess axonal damage in multiple sclerosis and other white matter diseases. J Neurovirol 2000;6:S121–9.

    PubMed  Google Scholar 

  7. Arnold DL, Riess GT, Matthews PM, Francis GS, Collins DL, Wolfson C, Antel JP. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol 1994;36:76–82.

    Article  PubMed  CAS  Google Scholar 

  8. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 1994;117:49–58.

    Article  PubMed  Google Scholar 

  9. Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, Antel JP, Wolfson C, Arnold DL. Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 1998;121:103–13.

    Article  PubMed  Google Scholar 

  10. De Stefano N, Matthews PM, Narayanan S, Francis GS, Antel JP, Arnold DL. Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 1997;49:1138–41.

    PubMed  Google Scholar 

  11. The IFNB multiple sclerosis study group. Interferon β-lb is effective in relapsing-remitting multiple sclerosis. I clinical results of a multicenter, randomized, double-blind placebo-controlled trial. Neurology 1993;43:655–61.

    Google Scholar 

  12. Pan JW, Hetherington HP, Mitchell G, Pohost GM, Whitaker JN. 1H spectroscopic imaging of multiple sclerosis at 4.1 T: effects of β-interferon therapy. Proceedings of the International Society of Magnetic Resonance in Medicine, third Meeting, Nice, Book of Abstracts, 1995: 1800.

  13. Sarchielli P, Presciutti O, Tarducci R, Gobbi G, Alberti A, Pelliccioli GP, Orlacchio A, Gallai V. 1H-MRS in patients with multiple sclerosis undergoing treatment with interferon β-la: results of a preliminary study. J Neurol Neurosurg Psychiatry 1998;64:204–12.

    PubMed  CAS  Google Scholar 

  14. Behar KL, Rothman DL, Spencer DD, Petroff OAC. Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 1994;32:294–302.

    Article  PubMed  CAS  Google Scholar 

  15. Elster C, Link A, Schubert F, Seifert F, Walzel M, Rinneberg H. Quantitative MRS: comparison of time domain and time domain frequency domain methods using a novel test procedure. Magn Reson Imag 2000;18:597–606.

    Article  CAS  Google Scholar 

  16. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52.

    PubMed  CAS  Google Scholar 

  17. van den Boogaart A, Van Hecke P. van Huffel S, Graveron-Demilly D, van Ormondt D, de Beer R. MRUI: a graphical user interface for accurate routine MRS data analysis. Proceedings of the European Society of Magnetic Resonance in Medicine and Biology, 13th Meeting, Prague, Book of Abstracts, 1996;318. See also http://www.mrui.uab.es/mrui/mruiHomePage.html.

  18. Schubert F, Seifert F, Elster C, Link A, Walzel M, Rinneberg H. Improvement of the analytical quality of MR spectroscopy data by frequency corrected averaging. Proceedings of the European Society of Magnetic Resonance in Medicine and Biology, 17th Meeting, Paris, Book of Abstracts. 2000: 189.

  19. Danielsen ER, Henriksen O. Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites. NMR Biomed 1994;7:311–8.

    Article  PubMed  CAS  Google Scholar 

  20. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979;74:829–36.

    Article  Google Scholar 

  21. IMSL MATH/LIBRARY. Houston: Visual Numerics Inc, 1994.

  22. Barker PB, Hearshen DO, Boska MD. Single voxel proton MRS of the human brain at 1.5 and 3.0 T. Magn Reson Med 2001;45:765–9.

    Article  PubMed  CAS  Google Scholar 

  23. Schubert F, Seifert F, Rinneberg H, Mientus S, Haas J. Evolution of brain metabolite concentrations in multiple sclerosis during interferon-β therapy measured by MRS at 3 T. Proceedings of the European Society of Magnetic Resonance in Medicine and Biology, 16th Meeting, Seville, Book of Abstracts. 1999; 37.

  24. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993;30:672–9.

    Article  PubMed  CAS  Google Scholar 

  25. Stanley JA, Drost DJ, Williamson PC, Thompson RT. The use of a priori knowledge to quantify short echo in vivo 1H MR spectra. Magn Reson Med 1995;34:17–24.

    Article  PubMed  CAS  Google Scholar 

  26. Elster C, Link A, Schubert F, Seifert F, Walzel M, Richter D, Rinneberg H. Assessment of current methods of analysis for quantitative in-vivo magnetic resonance spectroscopy. In: Ciarlini P, Cox MG, Filipe E, Pavese F, Richter D, editors. Advanced Mathematical & Computational Tools in Metrology Vol 5, Series on Advances in Mathematics for Applied Sciences Vol 57. Singapore: World Scientific, 2001:133–40.

    Google Scholar 

  27. Pan JW, Hetherington HP, Vaughan JT, Mitchell G, Pohost GM, Whitaker JN. Evaluation of multiple sclerosis by 1H spectroscopic imaging at 4.1 T. Magn Reson Med 1996;36:72–7.

    Article  PubMed  CAS  Google Scholar 

  28. Schiepers C, Van Hecke P, Vandenberghe R, Van Oostende S, Dupont P, Demaerel P, Bormans G, Carton H. Positron emission tomography, magnetic resonance imaging and proton NMR spectroscopy of white matter in multiple sclerosis. Multiple Sclerosis 1997;3:8–17.

    Article  PubMed  CAS  Google Scholar 

  29. Davie CA, Barker GJ, Thompson AJ, Tofts PS, McDonald WI, Miller DH. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 1997;63:736–42.

    Article  PubMed  CAS  Google Scholar 

  30. Vermathen M, Rooney WD, Goodkin DE, Weiner MW. Creatine and myo-inositol are increased in multiple sclerosis normal appearing white matter. Proceedings of the International Society of Magnetic Resonance in Medicine, seventh Meeting, Philadelphia, Book of Abstracts, 1999; 1440.

  31. Narayana PA, Doyle TJ, Lai D, Wolinsky JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 1998;43:56–71.

    Article  PubMed  CAS  Google Scholar 

  32. Sarchielli P, Presciutti O, Pelliccioli GP, Tarducci R, Gobbi G, Chiarini P, Alberti A, Vicinanza F, Gallai V. Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 1999;122:513–21.

    Article  PubMed  Google Scholar 

  33. Leary SM, Davie CA, Parker GJM, Stevenson VL, Wang L, Barker GJ, Miller DH, Thompson AJ. 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J Neurol 1999;246:1023–6.

    Article  PubMed  CAS  Google Scholar 

  34. Wolinsky JS, Narayana PA, Doyle TJ, Lindsey JW. Serial 2-D proton magnetic resonance spectroscopic imaging (MRSI) of multiple sclerosis (MS). Neurology 1995;45(Suppl. 4):434S.

    Google Scholar 

  35. Mader I, Roser W, Kappos L, Hagberg G, Seelig J, Radue EW, Steinbrich W. Serial proton MR spectroscopy of contrast-enhancing multiple sclerosis plaques: absolute metabolic values over 2 years during a clinical pharmacological study. Am J Neuroradiol 2000;21:1220–7.

    PubMed  CAS  Google Scholar 

  36. De Stefano N, Matthews PM, Antel JP, Preul M, Francis GS, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995;38:901–9.

    Article  PubMed  Google Scholar 

  37. De Stefano N, Matthews PM, Arnold DL. Reversible decreases inN-acetylaspartate after acute brain injury. Magn Reson Med 1995;34:721–7.

    Article  PubMed  Google Scholar 

  38. Wahba G. Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics Vol 59. Philadelphia: Society for Industrial Application of Mathematics, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, F., Seifert, F., Elster, C. et al. Serial 1H-MRS in relapsing-remitting multiple sclerosis: effects of interferon-β therapy on absolute metabolite concentrations. MAGMA 14, 213–222 (2002). https://doi.org/10.1007/BF02668215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668215

Keywords

Navigation