Advertisement

Metallurgical and Materials Transactions A

, Volume 24, Issue 6, pp 1251–1256 | Cite as

Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and conclusions

  • W. Sha
  • A. Cerezo
  • G. D. W. Smith
Alloy Phases

Abstract

This article summarizes our studies of phase chemistry and precipitation reactions in a variety of maraging steels. The roles of different phases and alloying elements are investigated by comparing the behavior of different steels. The phases considered are Ni3Ti, Fe7Mo6 μ phase, Fe2Mo Laves phase, ω phase, Ti6Si7Ni16 G phase, “Z phase,” austenite, and α matrix. The alloying elements discussed are Ti, AI, Mo, Si, Mn, Ni, Cr, and Co. By comparing the aging behavior of both commercial steels and model alloys, a major role of Co is confirmed to be the lowering of the matrix solubility of Mo. Of the two main hardening elements in maraging steels (namely, Ti and Mo), Ti is much more active than Mo in the very early stage of precipitation. The main Mo-rich precipitate found in this work was Fe7Mo6μ phase instead of Laves phase. The precipitation of Mo is modified by the presence of Ti. ω phase appears only in Ti-free alloys, especially when aged at a low temperature. The quantity of Ni-containing precipitates and the presence of Cr in the steels change the austenite reversion behavior. Other phases, such as G phase and “Z phase,” contribute to age hardening in different types of maraging alloys.

Keywords

Austenite Martensite Metallurgical Transaction Maraging Steel Ni3Ti 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Sha, A. Cerezo, and G.D.W. Smith:Metall. Trans. A, 1993, vol. 24A, pp. 1221–32.CrossRefGoogle Scholar
  2. 2.
    W. Sha, A. Cerezo, and G.D.W. Smith:Metall. Trans. A, 1993, vol. 24A, pp. 1233–39.CrossRefGoogle Scholar
  3. 3.
    W. Sha, A. Cerezo, and G.D.W. Smith:Metall. Trans. A, 1993, vol. 24A, pp. 1241–49.CrossRefGoogle Scholar
  4. 4.
    R.K. Pitler and G.S. Ansell:ASM Trans. Q., 1964, vol. 57, pp. 220–46.Google Scholar
  5. 5.
    R.F. Decker and S. Floreen: inMaraging Steels: Recent Developments and Applications, R.K. Wilson, ed., TMS-AIME, Warrendale, PA, 1988, pp. 1–38.Google Scholar
  6. 6.
    Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Swarthmore, PA.Google Scholar
  7. 7.
    B.G. Hyde and S. Andersson:Inorganic Crystal Structures, John Wiley & Sons Inc., New York, NY, 1989, p. 381.Google Scholar
  8. 8.
    B.R. Banerjee and J.J. Hauser: inTransformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1968, pp. 133–50.Google Scholar
  9. 9.
    J.R. Mihalisin and C.G. Bieber:J. Met., 1966, vol. 18, pp. 1033–36.Google Scholar
  10. 10.
    W.E. Bandi, J.L. Lutz, and L.M. Melnick:J. Iron Steel Inst., 1969, vol. 207, pp. 348–52.Google Scholar
  11. 11.
    Binary Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM, Materials Park, OH, 1990, vol. 2, p. 1727.Google Scholar
  12. 12.
    C. Servant, P. Lacombe, and M. Griveau:J. Mater. Set., 1980, vol. 15, pp. 859–70.CrossRefGoogle Scholar
  13. 13.
    C. Servant, N. Bouzid, and O. Lyon:Phil. Mag. A, 1987, vol. A56, pp. 565–82.CrossRefGoogle Scholar
  14. 14.
    C. Servant, G. Maeder, and G. Cizeron:Metall. Trans. A, 1975, vol. 6A, pp. 981–90.CrossRefGoogle Scholar
  15. 15.
    N. Bouzid, C. Servant, and O. Lyon:Phil. Mag. B, 1988, vol. 57B, pp. 343–59.CrossRefGoogle Scholar
  16. 16.
    C. Servant and N. Bouzid:Phil. Mag. B, 1989, vol. 60B, pp. 659–87.CrossRefGoogle Scholar
  17. 17.
    J.B. Lecomte, C. Servant, and G. Cizeron:J. Mater. Sci., 1985, vol. 20, pp. 3339–52.CrossRefGoogle Scholar
  18. 18.
    C. Servant: Institut de Sciences des Matériaux, Université Paris- Sud, private discussion, 1991.Google Scholar
  19. 19.
    G.V. Raynor and V.G. Rivlin:Phase Equilibrium in Iron Ternary Alloys, The Institute of Metals, London, 1988, p. 354.Google Scholar
  20. 20.
    Metals Handbook, 9th ed., vol. 9, ASM, Metals Park, OH, 1988, pp. 13, 461, and 474.Google Scholar
  21. 21.
    Metals Handbook, 10th ed., vol. 2, ASM, Materials Park, OH, 1990, p. 606.Google Scholar
  22. 22.
    Binary Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM, Materials Park, OH, 1990, vol. 3, p. 2575.Google Scholar
  23. 23.
    C. Servant and N. Bouzid:Acta Metall., 1988, vol. 36, pp. 2771–78.CrossRefGoogle Scholar
  24. 24.
    D.T. Peters:ASM Trans. Q., 1968, vol. 61, pp. 62–74.Google Scholar
  25. 25.
    A. Gemperle, J. Gemperlová, J. Sevely, and Y. Kihn:Proc. 7th Symp. of Metallography, Vysoké Tatry, Czechoslovakia, 1989, p. 525.Google Scholar
  26. 26.
    A.P. Miodownik: Department of Materials Science and Engineering, University of Surrey, Surrey, United Kingdom, private discussion, 1991.Google Scholar
  27. 27.
    A. Magnee, J.M. Drapier, J. Dumont, D. Coutsourdis, and L. Habraken:Cobalt-Containing High-Strength Steels: A Critical Review of the Physical Metallurgy of Cobalt-Containing High- Strength Steels, and a Survey of Their Processing, Properties and Uses, Centre D’Information Du Cobalt, Brussels, 1974, pp. 50–123.Google Scholar
  28. 28.
    S. Floreen:Metall. Rev., 1968, vol. 13, pp. 115–28.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1993

Authors and Affiliations

  • W. Sha
    • 1
  • A. Cerezo
    • 2
  • G. D. W. Smith
    • 2
  1. 1.Department of Materials Science and MetallurgyCambridge UniversityCambridgeUK
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations