Skip to main content
Log in

Stratigraphic architecture of a Santonian mixed siliciclastic-carbonate succession (Catalonian Pyrenees, Spain)

  • Published:
Facies Aims and scope Submit manuscript

Summary

At Collades de Bastus, Catalonian Pyrences, a Santonian mixed siliciclastic-carbonate succession indicates two proximal-distal gradients, and records two styles of stratigraphical development upon relative sea-level change. The succession consists of four small-scale sequences (5.1 to 5.4) within the highstand systems tract of the. “Valicarca-5” depositional sequence of Simo (1993), and is topped by a drowning sequence (small-scale sequence 5.5).

The investigated succession (Collades Member) accumulated near the margin of the south-Pyrenean shelf, shortly before development of the south-vergent Boixols thrust system. Deposition of the Collades Member commenced with moderate sea-level rise accompanied by increased siliciclastic input. In the larger, eastern outcrop sector the Collades Member consists of a succession of neritic marls with four intercalated intervals each deposited from a carbonate shelf. Each carbonate interval consists of stacked upward-shoaling cycles interpreted as parasequences. From bottom to top, most parasequences consist of a coral-sponge-rudist bioconstruction, a rudist biostrome, and bioclastic limestones. Depositional sequences 5.1 to 5.4 developed by overstep of shelf carbonates with neritic marls, corresponding to the transgressive systems tract (TST) and to part of the highstand systems tract(HST) The carbonate facies tract of the HST consists of stacked parasequences that become thinner up-section and record a westward component of progradation. Each highstand carbonate interval is overlain by a stack of carbonate parasequences that become thicker up-section and, down depositional dip, by neritic marls. Together, the upward-thickening parasequence stack and the laterally adjacent overlying succession of neritic marls comprise the TST and part of the HST of the successive sequence. The sequence boundary is the level of maximum shoaling within each carbonate shelf interval. The uppermost sequence 5.5 is a drowning sequence (cf. Simo 1993).

In the western outcrop sector, the Collades Member consists of hummocky cross-laminated to bioturbated sandy calcarenites, of neritic marls and of relatively thin intervals of coral-sponge-rudist limestones. Sequence development may have started with deposition of sharp-based bedsets of sandy calcarenites that both eastward and up-section become thinner and grade into neritic marls. Together, the succession of sandy calcarenites and neritic marls may comprise the TST and, possibly, part of the HST. In the HST neritic marls and, locally, coral-sponge-rudist bioconstructions accumulated. Deposition of some calcarenite bedsets seems to have started near or closely after maximum progradation of each carbonate shelf in the eastern part of outcrop. The stratigraphic architecture of the Collades Member indicates, for the eastern outcrop sector, an east-west proximal-distal gradient, whereas the western sector records a west-east gradient. The opposite gradients result from outcrop intersection subparallel to oblique to general northward depositional dip, across two distinct shelf depositional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbués, P., Pi, E. & Beràstegui, X. (1996): Relaciones entre la evolución sedimentaria del Grupo de Arén y e cabalgamiento de Bóixols (Campaniense terminal-Maastrichtiense del Pirineo medidional-central).—Geogaceta,20, 446–449, Madrid

    Google Scholar 

  • Ardévol, L., Klimowitz, J., Malagón, J. & Nagtegaal, P. J. C. (2000): Depositional sequence response to foreland deformation in the Upper Cretaceous of the southern Pyrences.— Amer. Ass. Petrol. Geol. Bull.84, 566–587, Tulsa

    Google Scholar 

  • Bourrouith-Le Jan, F. G. (1998): The role of high-energy events (hurricanes and/or tsumamis) in the sedimentation, diagenesis and karst initiation of tropical shallow-water carbonate platforms and atolls.—Sedim. Geol.,118, 3–36, Amsterdam

    Article  Google Scholar 

  • Budd, D. A. (1988): Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: Insights from porewater chemistry.—Geol. Soc. Am. Bull.,100, 1260–1270, Boulder

    Article  Google Scholar 

  • Caus, E., Cornella, A. Gallemi, J., Gili, E. Martinez, R. & Pons, J. M. (1981): Field guide: Excursons to Coniacian-Maastrichtian of south central Pyrenees.—Universidad Autonoma de Barcelona, Publicaciones de Geologia,13, 70 pp., Bellaterra

  • Deramond, J., Souquet, P. Fondecave-Wallez, M.-J. & Specht, M. (1993): Relationships between thrust tectonics and sequence stratigraphy surfaces in foredeeps: model and examples from the Pyrenees (Cretaceous-Eocene, France, Spain). —In: Williams, G. D. and Dobb, A (eds.): Tectonics and Seismic Sequence Stratigraphy.—Geol. Soc. Spec. Publ.,71, 193–219, London

  • Dott, Jr., R. H. & Bourgeois, J. (1982): Hummocky stratification: significance of its variable bedding sequences.—Geol. Soc. Am. Bull.,93, 663–680, Boulder

    Article  Google Scholar 

  • Fouke, B. W., Everts, A.-J. W., Zwart, E. W., Schlager, W., Smalley, P. C. & Weissert, H. (1996): Subaerial exposure unconformities on the Vercors carbonate platform (SE France) and their sequence stratigraphic significance.—In. Howell, J. A. and Aitken, J. F. (eds.): High resolution sequence stratigraphy: Innovations and applications.—Geol. Soc. Spec. Publ.,104. 295–319, London

  • Gallemi, J., Martinez, R. & Pons, J. M. (1983): Coniacian-Maastrichtian of the Tremp Area (south central Pyrenees).— Newsl. Stratigr.12, 1–17, Berlin

    Google Scholar 

  • Garrido-Megias, A. & Rios-Aragues, L. M. (1972): Sintesis geologica del Secundario y Terciario entre los rios Cinco y Segre.—Boletim. Geol. Min.,93, 1–47, Madrid

    Google Scholar 

  • Gawthorpe, R. L., Sharp, I., Underhill, J. R. & Gupta, S. (1997): Linked sequence stratigraphic and structural evolution of propagating normal faults.—Geology,25, 795–798, Boulder

    Article  Google Scholar 

  • Gili, E. (1984): Interaccions sedimentologiques i biologiques a les formacions calcàries de rudistes (Bivalvia) de Les Collades des Basturs (Cretaci Superior, Zona Subpyrenenca Central). —Publicacions de la Universitat Autónoma de Barcelona, Bellaterra, Facultat de Ciències,40, 42 pp., Bellaterra

  • Gili, E. (1992): Paleoccological significance of rudist constructions: a case study from Les Collades des Basturs (Upper Cretaceous, south-central Pyrenees).—Geol. Rom.,28, 319–325, Roma

    Google Scholar 

  • Gili, E. (1993): Facies and geometry of Les Collades des Basturs carbonate platform, Upper Cretaceous, south-central Pyrenees. —In. Simo, J. A. T., Scott, R. W. and Masse, J.-P. (eds.): Cretaceous Carbonate Platforms.—Amer. Ass. Petrol. Geol. Mem.,56, 343–352, Tulsa

  • Gili, E., López, G., Obrador, A., Skelton, P. W. & Vicens, E. (1994): Observaciones sobre la posición estratigráfica de las formaciones de rudistas de Sant Corneli (cuenca cretácica surpirenaica central).—Geogaceta,15, 34–36, Madrid

    Google Scholar 

  • Gili, E., Skelton, P. W., Vicens, E. & Obrador, A. (1995): Corals to rudists-an environmentally induced assemblage succession. —Palaeogeogr., Palaeoclimatol., Palaeoecol.,119, 127–136, Amsterdam

    Article  Google Scholar 

  • Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P., Thierry, J. & Huang, Z. (1994): A Mesozoic time scale.—J. Geophys. Res.,99, B12, 24.051–24.074, Tulsa

    Article  Google Scholar 

  • Hampson, G. J. (2000): Discontinuity surfaces, clinoforms, and facies architecture in a wave-dominated, shoreface-shelf parasequence.—J. Sed. Res.,70, 325–340, Tulsa

    Google Scholar 

  • Hottinger, L., Drobne, K. & Caus, E. (1989): Late Cretaceous, larger, complex miliolids (Foraminifera) endemic in the Pyrenean faunal province.—Facies,21, 99–133, Erlangen

    Article  Google Scholar 

  • Howell, J. A. & Flint, S. S. A. (1996): A model for high resolution sequence stratigraphy within extensional basins.—In: Howell, J. A. and Aitken, J. F. (eds.): High Resolution Sequence Stratigraphy: Innovations and Applications—Geol. Soc. Spec. Publ.104, 129–137, London

  • Inden, R. F. & Moore, C. H. (1983): Beach Environment.—In: Scholle, P. A., Bebout, D. G. and Moore, C. H. (eds.): Carbonate Depositional Environments.—Amer. Ass. Petrol. Geol. Mem.,33, 211–265, Tulsa

  • Ito, M., Nishikawa, T. & Sugimoto, H. (1999): Tectonic control of high-frequency depositional sequences with durations shorter than Milankovitch cyclicity: An example from the Pleistocene paleo-Tokyo Bay, Japan.—Geology,27, 763–766, Boulder

    Article  Google Scholar 

  • Kendall, C. G. St. C. & Lerche, I. (1985): Carbonate cementation-a brief review.—In: Schneidermann, N. and Harris, P. M. (eds.): Carbonate Cements.-Soc. Econ. Pal. Min. Spec. Publ.,36, 79–95, Tulsa

  • Kreisa, R. D. (1981): Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia.—J. Sed. Pet.,51, 823–848, Tulsa

    Google Scholar 

  • MacNaughton, R. B., Dalrymple, R. W. & Narbonne, G. M. (1997): Multiple orders of relative sea-level change in an earliest Cambrian passive-margin succession, MacKenzie Mountains, northwestern Canada.—J. Sed. Res.,67, 622–637, Tulsa

    Google Scholar 

  • Mitchum, R. M. & Van Wagoner, J. C., Jr. (1991): High-frequency sequences and their stacking patterns: Sequence-stratigraphic evidence of high-frequency eustatic cycles.— Sedim. Geol.,70, 131–160, Amsterdam

    Article  Google Scholar 

  • Plaziat, J. C. (1981): Late Cretaceous to Late Eocene palaeogeographic evolution of southwest Europe.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,36, 263–320, Amsterdam

    Article  Google Scholar 

  • Pons, J. M. (1977): Estudio estratigrafico y paleontologico de los yacimientos de rudistidos del Cretacico Sup. del Prepirineo de la Prov. de Lerida.—Universidad Autonoma de Barcelona. Publicaciones de Geologia,3, 105 pp. Bellaterra

  • Puigdefàbregas, C., Munoz, J. A. & Vergés, J. (1992): Thrusting and foreland basin evolution in the Southern Pyrenees.—In: McClay, K. R. (ed.): Thrust tectonics. 247–254, London (Chapman & Hall)

    Google Scholar 

  • Rosell, J. & Llompart, C. (1982): Pirineo.—In: El Cretacico de Espagna. Universidad Complutense, p. 161–198. Madrid

    Google Scholar 

  • Sami, T. & Desrochers, A. (1992): Episodic sedimentation on an carly Silurian, storm-dominated carbonate ramp, Becsie and Merrimack formations, Anticosti Island, Canada.—Sedimentology,39, 355–381, Oxford

    Article  Google Scholar 

  • Sanders, D. & Pons, J. M. (1999a): Rudist formations in mixed siliciclastic-carbonate depositional environments, Upper Cretacecus. Austria: Stratigraphy, sedimentology, and models of development.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,148, 249–284, Amsterdam

    Article  Google Scholar 

  • Sanders, D. & Pons, J. M. (1999b): Elevator rudist biostromes „combed” by shoaling waves.—Erlanger geol. Abh., Sbd.3, 58–59, Erlangen

    Google Scholar 

  • Sanders, D. & Höfling, R. (2000): Carbonate deposition in mixed siliciclastic-carbonate cnvironments on top of an orogenic wedge (Late Cretaceous, Northern Calcareous Alps, Austria). —Sedim. Geol.,137, 127–146, Amsterdam

    Article  Google Scholar 

  • Schlager, W. (1998): Exposure, drowning and sequence boundaries on carbonate platforms.—Spec. Publs. int. Ass. Sediment.,25, 3–21, London

    Google Scholar 

  • Scott, R. W., Fernandez-Mendiola, P. A., Gili, E. & Simo, A. (1990): Persistence of coral-rudist reefs into the Late Cretaceous. —Palaios,5, 98–110, Boulder

    Article  Google Scholar 

  • Simo, A. (1986): Carbonate platform depositional sequences, Upper Cretaceous, south-central Pyrenees (Spain).— Tectonophysics,129, 205–231, Amsterdam

    Article  Google Scholar 

  • Simo, A. (1993): Cretaceous carbonate platforms and stratigraphic sequences, south-central Pyrences, Spain.—In: Simo, J. A. T., Scott, R. W. and Masse, J.-P. (eds.): Cretaceous Carbonate Platforms.—Amer. Ass. Petrol. Geol. Mem.,56, 325–342, Tulsa

  • Skelton, P. W., Gili, E., Vicens, E. & Obrador, A. (1995): The growth fabric of gregarious rudist elevators (hippuritids) in a Santonian carbonate platform in the southern Central Pyrenees. —Palaeogeogr., Palaeoclimatol., Palaeoecol.,119, 107–126, Amsterdam

    Article  Google Scholar 

  • Souquet, P. (1984): Les cycles majeurs du Crétacé de la paleomarge iberique dans les Pyrenées.—Strata. séric 1, vol1, 47–70 Toulouse

    Google Scholar 

  • Souquet, P. & Deramond, J. (1989): Sequence de chevauchements et séquences dépot dans un bassin d'avant-fosse. Exemple du sillon crétacé du versant sud des Pyrénées (Espagne).—Comptes Rendus de l'Academie des Sciences, Paris, t.309, 137–144, Paris

    Google Scholar 

  • Ullastre, J. (1998): Boceta para un mapa geológico detallado del frente del Montsec (Pirineo catalano-aragonés, Espagna).— Treballs Mus. Geol. Barcelona,7, 175–186, Barcelona

    Google Scholar 

  • Ullastre, J. & Masriera, A. (1996): Evolución tectónica de las unidades subpirenaicas al Wy al E de la linea de accidentes del Segre (Pirineo catalán, Espagna).—Treballs Mus. Geol. Barcelona,5, 213–253, Barcelona

    Google Scholar 

  • Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N. & Perez-Cruz, C. (1991): The Stratigraphic Signatures of Tectonies. Eustasy and Sedimentology-an Overview.—In: Einsele, G., Ricken, W. and Seilacher, A. (eds.): Cycles and Events in Stratigraphy, 617–659, Berlin (Springer)

    Google Scholar 

  • Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M. Vail. P. R. Sarg, R. F., Loutit, T. S. & Hardenbol, J. (1988): An overview of the fundamentals of sequence stratigraphy and key definitions.—In: Wilgus, C. K., Hastings, B. S., Ross, C. A., Posamentier, H. W. and Kendall, C. G. St. C. (eds.): Sea-Level Changes-An Integrated Approach.—Soc. Econ. Pal. Min. Spec. Publ.,42, 39–45, Tulsa

  • Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. & Rahmanian, V. D. (1990): Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies.—Amer. Ass. Petrol. Geol. Methods in Exploration Series,7, 55 pp. tulsa

  • Vicens, E., López, G. & Obrador, A. (1998): Facies succession, biostratigraphy and rudist faunas of Coniacian to Santonian platform deposits in the Sant Corneli anticline (southern central Pyrenees).—Géobios, Mem. Spec.,22, 403–427 Marseille

    Article  Google Scholar 

  • Vidal, A. (1980): Los scleractinia de Collades de, Basturs (Con.-Sant., Prepirineo de la Provincia de Lerida).—Unversitat Autónoma de Barcelona, Publicaciones de Geologia,11, 94 pp., Barcelona

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, D., Pons, J.M. Stratigraphic architecture of a Santonian mixed siliciclastic-carbonate succession (Catalonian Pyrenees, Spain). Facies 44, 105–135 (2001). https://doi.org/10.1007/BF02668170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668170

Keywords

Navigation