Skip to main content
Log in

Geochemical evidence for the formation of a large miocene “travertine” mound at a sublacustrine spring in a soda lake (Wallerstein castle rock, nördlinger ries, Germany)

  • Published:
Facies Aims and scope Submit manuscript

Summary

“Travertines” (tufa pinnacles) of the Miocene Riescrater basin have been investigated to test whether carbon, oxygen and strontium isotopes can be used for the recognition of fossil subaquatic spring deposits in high-alkalinity settings. The Ries basin “travertines” have so far been interpreted as a product of subaerial to sublacustrine artesian springs discharging calcareous groundwater into a freshwater or slightly saline lake. However, recent studies on microfacies and fabric development propose a formation at Ca2+-supplying sublacustrine springs of a soda lake. Geochemical analysis of “travertines” of the castle rock Wallerstein, including “sickle-cell” limestones, thrombolites, non-skeletal stromatolites, and speleothems, now support the latter interpretation.

High Sr contents surpassing that of the contemporaneously formed dolomitic algal biocherms of the lake shore point to an aragonitic composition of primary precipitates. the δ13C values of diagenetically moderately to weakly altered “travertine” facies types are in the same range of the impact-brecciated Upper Jurassic limestones, thus, are inconsistent with a mixture of soil-derived CO2 and CO3 2− from the Jurassic limestones. In addition, the δ18O values are too high to support a significant contribution of CO3 2− by meteoric waters seeping through marine Jurassic limestones. Instead the δ13C and δ18O values indicate an origin of the CO3 2− from a lake water body characterized by evaporation. This is consistent with a sodium-rich lake water as indicated by high sodium contents of aragonitic algal bioherms of the lake shore. The87Sr/86Sr isotope ratio of the “travertine” mound carbonates are consistent with calculated mixing of spring waters discharging from the crystalline basement and lake water high in dissolved inorganic carbon. This points to an origin of the divalent cations from sublacustrine spring waters. In turn,87Sr/86Sr isotope ratios of green algal reef carbonates of the lake shore are closer to that of the Upper Jurassic carbonates, due to surface run-off from surrounding limestone uplands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amundson, R. and Kelly, E. (1987): The chemistry and mineralogy of a CO2-rich travertine depositing spring in the California Coast Range.—Geochim. Cosmochim. Acta,51, 2883–2890, Oxford

    Article  Google Scholar 

  • Andrews, J.E., Pedley, M. and Dennis, P.F. (2000): Palaeoenvironmental record in Holocene Spanish tufas: a stable isotope approach in search of reliable climatic archives.— Sedimentology,47, 961–978, Oxford

    Article  Google Scholar 

  • Arp, G. (1995): Lacustrine bioherms, spring mounds and marginal carbonates of the Ries-impact-crater (Miocene, Southern Germany). —Facies,33, 35–90, Erlangen

    Article  Google Scholar 

  • Arp, G. and Wiesheu, R. (1997) Ein kontinuierliches Profil von Algenbiohermen bis zu Seetonen des miozänen Rieskratersees: Sequenzen, Mikrofazies und Dolomitisierung.—Geol Bl. NO-Bayern,47, 461–486 Erlangen

    Google Scholar 

  • Arp, G., Hofmann, J., and Reitner, J. (1998): Microbial fabric formation in spring mounds (“microbialites”) of alkaline salt lakes in the Badain Jaran Sand Sea, PR China.—Palaios,13, 581–592, Tulsa

    Article  Google Scholar 

  • Arp, G., Thiel, V., Reimer, A., Michaelis, W., and Reitner, J. (1999a): Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA.—Sed. Geol.,126, 159–176, Amsterdam

    Article  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (1999b): Calcification in cyanobacterial biofilms of alkaline salt lakes.—Eur. J. Phycol.,34, 393–403, Cambridge

    Article  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (2001a): Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans.—Science,292, 1701–1704, Washington

    Article  Google Scholar 

  • Arp, G., Wedemeyer, N. and Reitner, J. (2001b): Fluvial tufa formation in a hardwater creek (Deinschwanger Bach, Franconian Alb, Germany).—Facies,44, 1–22 Erlangen

    Google Scholar 

  • Banner, J.L. and Hanson, G.N. (1990): Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis—Geochim. Cosmochim. Acta,54, 3123–3137, Oxford

    Article  Google Scholar 

  • Bausch, W.M. (1965): Strontiumgehalte in süddeutschen Malmkalken.—Geol. Rdsch.,55, 86–96, Stuttgart

    Article  Google Scholar 

  • Bausch, W.M. and Hoefs, J. (1972): Die Isotopenzusammensetzung von Dolomiten und Kalken aus dem süddeutschen Malm.— Contr. Min. Petrol.,37, 121–130, Berlin

    Article  Google Scholar 

  • Barrat, J.A., Boulègue, J., Tiercelin, J.J. and Lesourd, M. (2000): Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa.—Geochim. Cosmochim. Acta,64, 287–298, Oxford

    Article  Google Scholar 

  • Benson, L. (1994): Carbonate deposition, Pxramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (tufas).—Palaeogeogr. Palaeoclimatol. Palaeoecol.,109, 55–87, Amsterdam

    Article  Google Scholar 

  • Benson, L., Kashgarian, M. and Meyer, R. (1995): I: Carbonate deposition, Pyramid Lake subbasin, Nevada; 2, Lake levels and polar jet stream positions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan Basin.—Palaeogeogr. Palaeoclimatol. Palaeoecol.,117, 1–30, Amsterdam

    Article  Google Scholar 

  • Bolten, R.H. (1977): Die karbonatischen Ablagerungen des obermiozänen Kratersees im Nördlinger Ries.—228+21 pp., 6 pls., Dissertation Universität München

  • Bolten, R. and Gall, H. (1978): Der Wallersteiner Felsen—ein geologisches Phänomen.—Nordschwaben,6, 18–21, Aalen

    Google Scholar 

  • Bolten, R.H., Gall, H. and Jung, W. (1976): Die obermiozäne (sarmatische) Fossil-Lagerstätte Wemding im Nördlinger Ries (Bayern). Ein Beitrag zur Charakterisierung des Riessee-Biotops. —Geol. Bl. NO-Bayern,26, 75–94, Erlangen

    Google Scholar 

  • Bolten, R. and Müller, D. (1969): Das Tertiär im Nördlinger Ries und in seiner Umgebung.—Geol. Bavarica,61, 87–130, München

    Google Scholar 

  • Buchardt, B., Israelson, C., Seaman, P. and Stockmann G. (2001): Ikaite tufa towers in Ikka Fjord, southwest Greenland: their formation by mixing of seawater and alkaline spring water.—J. Sed. Res.,71, 176–189, Tulsa

    Google Scholar 

  • Shoemaker, E.M. and Chao, E.C.T. (1961): New evidence for the impact origin of the Ries basin, Bavaria, Germany.—J. Geophys. Res. 66: 3371–3378, Washington

    Google Scholar 

  • Calvo, J.P., Jones, B.F., Bustillo, M., Fort, R., Alonso-Zarza, A.M. and Kendall, C. (1995): Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, central Spain.—Chem. Geol.,123, 173–191, Amsterdam

    Article  Google Scholar 

  • Council, T.C. and Bennett, P.C. (1993): Geochemistry of ikaite formation at Mono Lake, California: Implications for the origin of tufa mounds.—Geology,21, 971–974, Boulder

    Article  Google Scholar 

  • Craig, H. (1965): The measurement of oxygen isotope paleotemperatures.—In: Tongiorgi, E. (ed.): Stable isotopes in oceanographic studies and paleotemperatures.—Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, 162–182, Pisa

    Google Scholar 

  • Deffner, C. and Fraas, O. (1877): Begleitworte zur geognostischen Spezialkarte von Württemberg. Atlasblätter Bopfingen und Ellenberg.—36 pp., Stuttgart

  • Diemand, A. (1898): Der Wallersteiner Felsen und seine Geschichte. —76 pp., Nördlingen (Reischle)

    Google Scholar 

  • Dunn, J.R. (1953): The origin of the deposits of tufa in Mono Lake. —J. Sed. Petrol.,23, 18–23, Tulsa

    Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A. and Urey, H.C. (1953): Revised carbonate-water isotopic temperature scale.— Bull. Geol. Soc. Am.,64, 1315–1326, Boulder

    Article  Google Scholar 

  • Farmer, J. (1995): Mars exopaleontology.—Palaios,10, 197–198, Tulsa

    Article  Google Scholar 

  • Faure, G. (1986): Principles of isotope geology—2nd ed., 589 pp., New York (Wiley)

    Google Scholar 

  • Ford, T.D. (1989): Tufa—the whole dam story.—Cave Science,16, 39–49, Bridgewater

    Google Scholar 

  • Ford, T.D. and Pedley, H.M. (1996): A review of tufa and travertine deposits of the world—Earth Sci. Rev.,41, 117–175, Amsterdam

    Article  Google Scholar 

  • Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C. and Discipulo M.K. (2000): Depositional facies and aqueous—solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.).—J. Sed. Res.,70, 565–585, Tulsa

    Google Scholar 

  • Füchtbauer, H., von der Brelie, G., Dehm, R., Förstner, U., Gall, H., Höfling, R., Hoefs, J., Hollerbach, H., Jankowski, B., Jung, W., Malz, H., Mertes, H., Rothe, P., Salger, M., Wehner, H. and Wolf, M. (1977): Tertiary lake sediments of the Ries, research borehole Nördlingen 1973—a summary.—Geol. Bavarica,75, 13–19, München

    Google Scholar 

  • Gentner, W. and Wagner, G.A. (1969): Altersbestimmung an Riesgläsern und Moldaviten.—Geol. Bavarica,61, 296–303, München

    Google Scholar 

  • Golubic, S. (1973): The relationship between blue-green algae and carbonate deposits.—In: Carr, N.G. and Whitton, B.A. (eds.): The biology of blue-green algae.—Bot. Monogr.,9, 434–472, Oxford (Blackwell)

    Google Scholar 

  • Groiss, J.T., Haunschild, H. and Zeiss, A. (2000): Das Ries und sein Vorland.—Sammlung Geologischer Führer,92: 271 pp., Stuttgart (Borntraeger)

    Google Scholar 

  • Grotzinger, J.P. and Kasting, J.F. (1993): New contraints on Precambrian ocean composition.—J. Geol.,101, 235–243, Chicago

    Article  Google Scholar 

  • Gümbel, C.W., von (1870): Über den Riesvulkan und über vulkanische Erscheinungen im Rieskessel.—Sitzber. bayer. Akad. Wiss.,1, 153–200, München

    Google Scholar 

  • — (1889): Kurze Erläuterung zum Blatte Nördlingen (No. XVI) der geognostischen Karte des Königreichs Bayern.—43 pp., Cassel (Fischer)

    Google Scholar 

  • — (1891): Geognostische Beschreibung der Fränkischen Alb (Frankenjura) mit dem anstossenden fränkischen Keupergebiet.— Geognostische Beschreibung des Königreichs Bayern. Vierte Abtheilung: 763 pp. Kassel (Fischer)

    Google Scholar 

  • Herman, J.S. and Lorah, M.M. (1987): CO2 outgassing and calcite precipitation in Falling Spring Creek, Virginia, U.S.A..—Chem. Geol.,62, 251–262, Amsterdam.

    Article  Google Scholar 

  • — (1988): Calcite precipitation rates in the field: measurement and prediction for a travertine-depositing stream.—Geochim. Cosmochim. Acta,52, 2347–2355, Oxford

    Article  Google Scholar 

  • Hoefs, J. (1987): Stable isotope geochemistry.—3rd ed., 241 pp., Berlin (Springer)

    Google Scholar 

  • Hollaus, E. (1969): Geologische Untersuchungen im Ries. Das Gebiet der Blätter Nördlingen-Ost und Nördlingen-West, mit besonderer Berücksichtigung der Pleistozän-Ablagerungen.—85 pp., Dissertation Universität München

  • Horn, P., Müller-Sohnius, D., Köhler, H. and Graup, G. (1985): Rb-Sr systematics of rocks related to the Ries Crater, Germany.— Earth Planet. Sci. Lett,75, 384–392, Amsterdam

    Article  Google Scholar 

  • Hüttner, R. (1977): Impaktgesteine des Rieses.—Geol. Bavarica,76, 108–175, München

    Google Scholar 

  • Jankowski, B. (1977): Die Postimpakt-Sedimente in der Forschungsbohrung Nördlingen 1973.—Geologica Bavarica,75, 21–36, München

    Google Scholar 

  • — (1981): Die Geschichte der Sedimentation im Nördlinger Ries und Randecker Maar.—Bochumer geol. geotech. Arb.,6, 1–315, Bochum

    Google Scholar 

  • Janssen, A., Swennen, R., Podoor, N. and Keppens, E. (1999): Biological and diagenetic influence in Recent and fossil tufa deposits from Belgium.—Sed. Geol.,126, 75–95, Amsterdam.

    Article  Google Scholar 

  • Julia, R. (1983): Travertines.—In: Scholle, P.A., Bebout, D.G. and Moore, C.H. (eds.): Carbonate Depositional Environments.— Am. Assoc. Petrol. Geol. Mem.,33, 64–72, Tulsa

  • Kempe, S. and Kazmierczak, J. (1994): The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes.—Bulletin de l'Institut océanographique Monaco, no. spec.,13, 61–117, Monaco.

    Google Scholar 

  • — (1997): A terrestrial model for an alkaline martian hydrosphere. —Planet. Space Sci,45, 1493–1499, Oxford

    Article  Google Scholar 

  • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A. and Lipp, A. (1991): Largest known microbialites discovered in Lake Van, Turkey.—Nature,349, 605–608, London

    Article  Google Scholar 

  • Klähn, H. (1926): Vergleichende paläolimnologische, sedimentpetrographische und tektonische Untersuchungen an miocänen Seen der Schwäbischen Alb.—N. Jb. Min. Geol. Pal., Abt. B,55: 274–428, Stuttgart

    Google Scholar 

  • Knoll, A.H., Fairchild, I.J. and Swett, K. (1993): Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian Transition.—Palaios,8, 512–525, Tulsa

    Article  Google Scholar 

  • Koban, C.G. and Schweigert, G. (1993): Microbial origin of travertine fabrics—two examples from Southern Germany (Pleistocene Stuttgart travertines and Miocene Riedöschingen travertine).—Facies,29, 251–263, Erlangen

    Article  Google Scholar 

  • Land, L.S. and Hoops, G.K. (1973): Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions.—J. Sed. Petrol.,43, 614–617, Tulsa

    Google Scholar 

  • Langmuir, C.H., Vocke, R.D. and Hanson, G.N. (1978): A general mixing equation with applications to Icelandic basalts.—Earth Planet. Sci. Lett.,37, 380–392, Amsterdam

    Article  Google Scholar 

  • Lohmann, K.C. (1988): Geochemical patterns of meteoric diagenetic systems and their applications to studies to palaeokarst.— In: James, N.P. and Choquette, P.W. (eds.): Palaeokarst 55–80, Berlin (Springer)

    Google Scholar 

  • Merz-Preiß, M. and Riding, R. (1999): Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes.—Sed. Geol,126, 103–124, Amsterdam

    Article  Google Scholar 

  • Münzing, K. (1954): Geologische Untersuchungen zwischen Bopfingen und Nördlingen (Ries).—138 pp. Dissertation Universität Tübingen

  • — (1960): Stratigraphische und landschaftsgeschichtliche Beobachtungen in der Gegend von Bopfingen (Württemberg). —Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg,115, 175–215, Stuttgart

    Google Scholar 

  • Ogorelec, B. and Rothe, P. (1979): Diagenetische Entwicklung und faziesabhängige Na-Verteilung in Karbonat-Gesteinen Sloweniens.—Geol. Rdsch.,68, 965–978, Stuttgart

    Article  Google Scholar 

  • — and — (1992): Mikrofazies Diagenese und Geochemie des Dachsteinkalkes und Hauptdolomits in Süd-West-Slovenien.— Geologija35, 81–181, Ljubljana.

    Google Scholar 

  • Orzag-Sperber, F., Butterlin, J., Clermonte, J., Colchen, M., Guirand, R., Poisson, A. and Ricou, L.E. (1993): Tortonian (11.5–6 Ma). —In: Dercourt, J., Ricou, L.E. and Vrielynck, B. (eds.): Atlas Tethys Palaeoenvironmental Maps.—307 pp., 14 maps, 1 pl., Paris (Gauthier-Villars)

    Google Scholar 

  • Pedley, H.M. (1990): classification and environmental models of cool freshwater tufas.—Sed. Geol.,68, 143–154, Amsterdam

    Article  Google Scholar 

  • Pedley, H.M., Andrews, J.E., Ordonez, S., Garcia del Cura, M.A., Gonzalez, M.J.A. and Taylor, D. (1996): Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain.—Palaeogeogr. Palaeoclimatol. Palaeoecol.,121, 239–257, Amsterdam

    Article  Google Scholar 

  • Pentecost, A. and Whitton, B.A. (2000): Limestones.—In: Whitton, B.A. and Potts, M. (eds.): The Ecology of Cyanobacteria: 257–279, Dordrecht (Kluwer)

    Google Scholar 

  • Pösges, G. and Schieber, M. (1997): The Ries Crater Museum Nördlingen.—80 pp., München (Pfeil)

    Google Scholar 

  • Reis, O.M. (1926): Zusammenfassung über die im Ries südlich von Nördlingen auftretenden Süßwasserkalke und ihre Entstehung. —Jber. Mitt Oberrh. Geol. Ver., N.F.,14 (1925), 176–190, Stuttgart

    Google Scholar 

  • Riding, R. (1977): Skeletal stromatolites.—In: Flügel, E. (ed.): Fossil algae, recent results and developments: 57–60, Berlin (Springer)

    Google Scholar 

  • Riding, R. (1979): Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater Upper Miocene, southern Germany.—Sedimentology,26, 645–680, Oxford

    Article  Google Scholar 

  • Riding, R. (1991): Classification of microbial carbonates.—In: Riding, R. (ed.): Calcareous algae and stromatolites: 21–51, Berlin (Springer)

    Google Scholar 

  • Romanek, C., Grossman, E.L. and Morse, J.W. (1992): Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate.—Geochim. Cosmochim. Acta,56, 419–430, Oxford

    Article  Google Scholar 

  • Rothe, P. and Hoefs, J. (1977) Isotopen-geochemische Untersuchungen an Kabonaten der Ries-See-Sedimente der Forschungsbohrung Nördlingen 1973.—Geol. Bavarica,75, 59–66, München

    Google Scholar 

  • Russel, I.C. (1889): Quarternary history of the Mono Valley, California.—Eighth Annual Report of the United States Geological Survey: 262–394, Lee Vining (Reprint 1984, Artemisia Press)

  • Salomons, W. and Mook, W.G. (1986): Isotope geochemistry of carbonates in the weathering zone.—In: Fritz, P. and Fontes, J.C. (eds.): The terrestrial environment B.—Handbook of environmental isotope geochemistry,2, 239–269, Amsterdam

  • Schauderna, H. (1983): Die Diatomeenflora aus den Miozänen Seeablagerungen im Nördlinger Ries.—Palaeontographica,B 188, 83–193, Stuttgart

    Google Scholar 

  • Schnetzler, C.C., Philpotts, J.A. and Pinson, Jr. W.H. (1969): Rubidium-strontium correlation study of moldavites and Ries Crater material.—Geochim. Cosmochim. Acta,33, 1015–1021, Oxford

    Article  Google Scholar 

  • Scholl, D.W. (1960): Pleistocene algal pinnacles at Searles lake, California.—J. Sed. Petrol.,30, 414–431, Tulsa

    Google Scholar 

  • Scholl, D.W. and Taft, W.H. (1964): Algae, contributors to the formation of calcareous tufa, Mono Lake, California.—J. Sed. Petrol.,34, 309–319, Tulsa

    Google Scholar 

  • Shoemaker E.M. and Chao, E.C.T. (1961): New Evidence for the Impact Origin of the Ries Basin, Bavaria, Germany.—J. Geophys. Res.,66, 3371–3378, Washington

    Article  Google Scholar 

  • Staudacher, T., Jessberger, E.K., Dominik, B., Kirsten, T. and Schaeffer, O.A. (1982):40Ar−39Ar ages of rocks and glasses from the Nördlinger Ries crater and the temperature history of impact breccias.—J. Geophys.,51, 1–11, Berlin

    Google Scholar 

  • Stöffler, D. (1977): Research drilling Nördlingen 1973: polymict breccias, crater basement, and cratering model of the Ries impact structure.—Geol Bavarica,75, 443–458, München

    Google Scholar 

  • Tarutani, T., Clayton, R.N. and Mayeda, T. (1969): The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water.—Geochim. Cosmochim. Acta,33, 987–996, Oxford

    Article  Google Scholar 

  • Turner, J.V. (1982): Kinetic fractionation of carbon-13 during calcium carbonate precipitation.—Geochim. Cosmochim. Acta,46, 1183–1191, Oxford

    Article  Google Scholar 

  • Turner, E.C., James, N.P. and Narbonne, G.M. (2000): Taphonomic control on microstructure in Early Neoproterozoic reefal stromatolites and thrombolites.—Palaios,15, 87–11, Tulsa

    Article  Google Scholar 

  • Usdowski, E. and Hoefs, J. (1993): Oxygene isotope exchange between carbonic acid, bicarbonate, and water: a re-examination of the data ofMcCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water.—Geochim. Cosmochim. Acta,57, 3815–3818, Oxford

    Article  Google Scholar 

  • Usdowski, E., Hoefs, J. and Menschel, G. (1979): Relationship between13C and18O fractionation and changes in major element composition in a Recent calcite-depositing spring. A model of chemical variations with inorganic CaCO3 precipitation. —Earth Planet. Sci. Lett.,42, 267–276, Amsterdam

    Article  Google Scholar 

  • Wolff, M. and Füchtbauer, H. (1976): Die karbonatische Randfazies der tertiären Süßwasserseen des Nördlinger Ries und des Steinheimer Beckens.—Geol. Jb.,D14, 3–53, Hannover

    Google Scholar 

  • Wright, V.P., Alonso-Zarza, A.M., Sanz, M.E. and Calvo, J.P. (1997): Diagenesis of late Miocene micritic lacustrine carbonates, Madrid Basin, Spain.—Sed. Geol.,114, 81–95, Amsterdam

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pache, M., Reitner, J. & Arp, G. Geochemical evidence for the formation of a large miocene “travertine” mound at a sublacustrine spring in a soda lake (Wallerstein castle rock, nördlinger ries, Germany). Facies 45, 211–230 (2001). https://doi.org/10.1007/BF02668114

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668114

Keywords

Navigation