Advertisement

Facies

, Volume 45, Issue 1, pp 203–210 | Cite as

An example for black shale development on a carbonate platform (late Triassic, Seefeld, Austria)

  • Hagen Hopf
  • Volker Thiel
  • Joachim Reitner
Article

Summary

East of Seefeld/Tyrol the Hauptdolomit facies (Triassic, Norian) is accompanied by an organic-rich intercalation, the Seefeld facies. Three facies were distinguished, which developed within a separate basin within the Hauptdolomit carbonate platform. These facies have been investigated in an environmental and palaeoecological context applying microfacies analysis, palynology, organic petrology, organic geochemistry and stable isotope geochemistry. As the controlling factors of sedimentation, sea level changes are suggested for large scale fluctuations, and climatic changes for variations on a smaller scale. Within the basin facies a μm-scaled rhythm can be observed, which was obviously seasonally controlled. Amajor amount of organic material of the deposit has been produced by microbial activity under anoxic conditions. Causes for the absence of pollen and spores in many black shale deposits are discussed.

Keywords

Black Shale Carbonate Facies Organic Geochemistry Stable Isotopes Austria (Tyrol) Triassic (Norian, Hauptdolomit) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitterli, P. (1962): Studien an bituminösen Gesteinen aus Österreich und benachbarten Gebieten.—Erdöl-Z.78/7, 405–416, WienGoogle Scholar
  2. Bowen, R. (1988): Isotopes in Earth Sciences.—Elsevier Applied Science, 647 p., London (Elsevier)Google Scholar
  3. Brandner, R. and Poleschinski, W. (1986): Stratigraphie und Tektonik am Kalpalpensüdrand zwischen Zirl und Seefeld in Tirol (Exkursion D am 3. April 1986).—Jber. Mitt. Oberrhein. geol. Ver., N. F.68, 67–92, StuttgartGoogle Scholar
  4. Bürgin, T., Eichenberger, U., Furrer, H. and Tschanz, K. (1991): Die Prosanto-Formation—eine fischreiche Fossil-Lagerstätte in der Mitteltrias der Silvretta-Decke.—Eclog. geol. Helv.84/3, 921–990, BaselGoogle Scholar
  5. Czurda, K. (1973): Parameter und Prozesse der Bildung bituminöser Karbonate (Bituminöser Hauptdolomit).—Mitt. Ges. Geol. Bergbaust. Österr.21, 235–250, Wien.Google Scholar
  6. Deeke, W. (1898): Über Fische aus verschiedenen Horizonten der Trias.—Palaeontographica35, 97–138, StuttgartGoogle Scholar
  7. Dobruskina, I.A. (1993): First data of the Seefeld conifer flora (Upper Triassic, Tyrol, Austria).—In: Lucas, S.G. and Morales, M. (eds.): The nonmarine Triassic.—New Mexico. Mus. Nat. Hist. and Sci. Bull.3, 113–115, AlbuquerqueGoogle Scholar
  8. Eisenack A. (1973): Kleinorganismen als Zerstörer säurefester organischer Substanzen und von Biophosphaten.—Paläont. Z.47/1–2, 8–16, StuttgartGoogle Scholar
  9. Fischer, A.G. (1964): The Lofer Cyclothems of the Alpine Triassic. —Geol. Surv. Kans. Bull.169, 107–149, TopekaGoogle Scholar
  10. Fischer, G. (1957) Über die Bitumenmergel von Seefeld in Tirol. —Geol. Jb.74, 63–74, HannoverGoogle Scholar
  11. Fries, W. (1988): Fazies, Diagenese, Paläogeographie und anorganische Geochemie eines potentiellen Erdölmutter-gesteins: bituminöse und kerogenreiche Einschaltungen im Hauptdolomit (Trias, Ostalpen).—Ph.D. thesis, Universität Freiburg, 175 p., FreiburgGoogle Scholar
  12. Fritz, P. and Smith, D.G.W. (1970): The isotopic composition of secondary dolomites.—Geochim. Cosmochim. Acta34, 1161–1173, LondonCrossRefGoogle Scholar
  13. Fruth, I. and Scherreiks R. (1982): Hauptdolomit (Norian)-stratigraphy, paleogeography and diagenesis.—Sediment. Geol.32, 195–231, AmsterdamCrossRefGoogle Scholar
  14. —and— (1984): Hauptdolomit-Sedimentary and Paleogeographic Models (Norian, Northern Calcareous Alps).—Geol. Rundsch.73, 305–318, Berlin, HeidelbergCrossRefGoogle Scholar
  15. Irwin, H., Curtis, C. and Coleman, M. (1977): Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments.—Nature269, 209–213, LondonCrossRefGoogle Scholar
  16. Kempe, S. (1990): Alkalinity: The link between anaerobic basins and shallow water carbonates?—Naturwissenschaften77, 426–427, BerlinCrossRefGoogle Scholar
  17. Kner, R. (1866): Die fossilen Fische der Asphaltschiefer von Seefeld in Tirol.—Sitzber. Akad. Wiss. Wien, math.-nat. Kl.54, 303–334, WienGoogle Scholar
  18. — (1867): Die fossilen Fische der Asphaltschiefer von Tirol. Nachtrag 1 und 2.—Sitzber. Akad. Wiss. Wien, math.-nat. Kl.56, 898–913, WienGoogle Scholar
  19. Köster, J. (1989): Organische Geochemie und Organo-Petrologie kerogenreicher und bituminöser Einschaltungen im Hauptdolomit (Trias, Nor) der Nördlichen Kalkalpen.—Clausthaler Geowiss. Diss.36, 1–269, Clausthal-ZellerfeldGoogle Scholar
  20. Köster, J., Fries, W., Bechstädt, T. and Kulke, H. (1989): Kerogenreiche und bituminöse Einschaltungen im Hauptdolomit (Obertrias, Ostalpen): Modell eines karbonatischen Mutter-gesteins. —Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, Bericht361, 1–305, HamburgGoogle Scholar
  21. Köster, J., Wehner, H. and Hufnagel, H. (1988): Organic geochemistry and organic petrology of organic rich sediments within the “Hauptdolomit” formation (Triassic, Norian) of the Northern Calcareous Alps.—Org. Geochem.13/1–3, 377–386, ParisCrossRefGoogle Scholar
  22. Köster, J., Schouten, S., dee Leeuw, J.W., Sinninghe Damsté, J.S. (1993): Palaeoenvironmental and maturity related variations in compositions of macromeolecular organic matter and distribution of sulphur and nonsulphur biomarkers in Triassic organicrich carbonate rocks.—In: Øygard, K.E. (ed.): Organic geochemistry, Poster sessions from the 16th International Meeting on Organic Geochemistry, Stavanger 402–406, Oslo (Falch Hurtigtrykk)Google Scholar
  23. Lobitzer, H., Kodina A., Solti, G., Schwaighofer, B. and Surenian, R. (1988): Fazies, Geochemie und Stratigraphie ausgewählter Vorkommen österreichischer organisch-reicher Gesteine-ein Zwischenbericht.—Geol. Pal. Mitt. Univ. Innsb.15, 85–107, InnsbruckGoogle Scholar
  24. McCrea, J.M. (1950): On the isotopic chemistry of carbonates and a palaeotemperature scale.—J. Chem. Phys.18, 849–857, College ParkCrossRefGoogle Scholar
  25. Müller-Jungbluth, W.V. (1970): Sedimentologische Untersuchungen des Hauptdolomits der östlichen Lechtaler Alpen, Tirol.—In: Mostler, H. (ed.): Beiträge zur Mikrofazies und Stratigraphie von Tirol und Vorarlberg, 255–308, InnsbruckGoogle Scholar
  26. Palmer, S. E., Khavari Khorasani, G., and Scott, R. W. (1995): Organic Geochemistry and depositional environment of Mesozoic organic-rich carbonates.—In: Grimalt, J.O., Dorronso, C. (eds.): Organic Geochemistry: Developments and applications to energy, climate, environment and human history. Selected papers from the 17th International Meeting on Organic Geochemistry (EAOG). A.I.G.O.A., 70–73, San SebastianGoogle Scholar
  27. Peters, K. E. and Moldowan, J. M. (1993): The Biomarker Guide-Interpreting Molecular Fossils in Petroleum and Ancient Sediments.— 363 S., Englewood Cliffs, New Jersey (Prentice Hall)Google Scholar
  28. Poleschinski, W. (1989): Stratigraphie, Fazies und Sedimentologie der Seefelder Schichten im Raum Seefeld/Tirol-ein potentielles Erdölmuttergestein aus dem Ober-Nor der Westlichen Kalkalpen.—Ph.D. thesis, Universität Innsbruck, 197 p., InnsbruckGoogle Scholar
  29. Raupach P. (1952): Die rezente Sedimentation im Schwarzen Meer, im Kaspi und im Aralsse.—Geologie1, 78–132, BerlinGoogle Scholar
  30. Riegel, W., Loh, H., Maul, B. and Prauss, M. (1986): Effects and causes in a black shale event-the Toarcian Posidonia shale of NW Germany.—Lect. Not. Earth. Sci.8, 267–276, HeidelbergCrossRefGoogle Scholar
  31. Rosenbaum, J. and Sheppard, S. M.F. (1986): An isotopic study of siderites, dolomites and ankerites at high temperatures.— Geochim. Cosmochim. Acta.50, 1147–1150, LondonCrossRefGoogle Scholar
  32. Sander, B. (1921): Über bituminöse Mergel.—Jb. Geol. Staats-Anst.71/3–4, 135–148, WienGoogle Scholar
  33. — (1922): Über bituminöse und kohlige Gesteine.—Mitt. Geol. Ges. Wien15, 1–50, WienGoogle Scholar
  34. — (1936): Beiträge zur Kenntnis des Anlagerungsgefüges (Rhythmische Kalke und Dolomite aus der Trias) I und II.— Tschermaks mineral. petrograph. Mitt.48, 27–139, 141–209 WienGoogle Scholar
  35. Savrda, C.E. and Bottjer, D.J. (1987): The exaerobic zone, a new oxygen deficient marine biofacies.—Nature327, 54–56, LondonCrossRefGoogle Scholar
  36. Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M. and de Leeuw, J.W. (1995): Evidence for gammacerane as an indicator of water column stratification.—Geochim. Cosmochim. Acta59, 1895–1900, LondonCrossRefGoogle Scholar
  37. Thiel, V., Jenisch, A., Landmann, G., Reimer, A., and Michaelis, W. (1997): Unusual distributions of long-chain alkenones and tetrahymanol from the highly alkaline Lake Van (Turkey).— Geochim. Cosmochim. Acta61, 2053–2064, LondonCrossRefGoogle Scholar
  38. Tintori, A. and Sassi, D. (1987): Pesci volanti del genereThoracopterus nel Norico Lombardo. Nota prelimare.—Riv. Ital. Pal. Strat.93, 337–346, MilanoGoogle Scholar
  39. Vasconcelos, C. O., McKenzie, J. A., Bernasconi S., Grujic, D., Tien, A. J. (1995): Microbial mediation as a possible mechanism for natural dolomite formation at low temperature.— Nature377, 220–222, LondonCrossRefGoogle Scholar
  40. Venkatesan, M.I. (1989): Tetrahymanol: its widespread occurrence and geochemical significance.—Geochim. Cosmochim. Acta53, 3095–3101, LondonCrossRefGoogle Scholar

Copyright information

© Institut für Palaentologie, Universitat Erlangen 2001

Authors and Affiliations

  • Hagen Hopf
    • 1
  • Volker Thiel
    • 2
  • Joachim Reitner
    • 3
  1. 1.Thüringer Landesanstalt für Umwelt und GeologieAußenstelle WeimarWeimar
  2. 2.Institut für Biogeochemie und MeereschemieUniversität HamburgHamburg
  3. 3.Göttinger Zentrum GeowissenschaftenGeorg-August-Universität GöttingenGöttingen

Personalised recommendations