Skip to main content
Log in

Substructure control by solidification control in cu crystals

  • Transformations
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

In an attempt to systematically control dislocation substructure, seeded <111>Cu single crystals have been grown from the melt at rates from 1.1 to 730 cm/h. Soft and hard graphite molds are used, with the hard molds surrounded by graphite or firebrick sleeves. In this fashion mold wall characteristics are varied and mold thermal conductivity is changed from 27×10−4 to 0.29×10−4 (cgs units). An increase in growth rate over this range has little effect on random dislocation density, which remains about 1.5×106 cm−2. The increase does cause a decrease in dislocation cell size from about 5×10−2 to 0.5×10−2 cm. The decrease varies approximately as (freezing rate)−1/2 in agreement with the dislocation half-loop model of dislocation generation. An increase of mold thermal conductivity of a factor of 100 has little effect on random density, but causes a 50 to 300 pct increase in cell size. Crystals grown in soft molds have a random density about one-half those grown in hard molds. The cell size is comparable to that obtained with firebricked-sleeved hard molds of similar thermal conductivity. The data indicate that solute effects do not play a significant part in substructure generation in copper of 99.999 pct purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Akita and N. F. Fiore:J. Phys. Chem. Solids, 1970, vol. 31, pp. 1941–45.

    Article  ADS  CAS  Google Scholar 

  2. H. Akita and N. F. Fiore:J. Appl. Phys., 1971, vol. 42, pp. 2203–08.

    Article  ADS  CAS  Google Scholar 

  3. J. Friedel:Dislocations, chap 7, Addison-Wesley, Reading, Mass., 1964.

    Google Scholar 

  4. W. A. Tiller: inThe Art and Science of Growing Crystals, J. J. Gilman, ed. pp. 276–90, Wiley, New York, 1963.

    Google Scholar 

  5. C. Elbaum:Prog. Metal Phys., 1959, vol. 8, pp. 203–53.

    Article  ADS  CAS  Google Scholar 

  6. B. Chalmers:Principles of Solidification, pp. 56–60, Wiley, New York, 1964.

    Google Scholar 

  7. F. W. Young, Jr., and J. R. Savage:J. Appl. Phys., 1964, vol. 35, p. 1917–24.

    Article  ADS  CAS  Google Scholar 

  8. K. R. Evans and W. Flanagan:Phil. Mag., 1966, vol. 14, pp. 1131–42.

    Article  ADS  CAS  Google Scholar 

  9. T. S. Noggle:Rev. Sci. Inst., 1953, vol. 24, pp. 184–88.

    Article  ADS  CAS  Google Scholar 

  10. R. R. Rowland:Trans. Faraday Soc., 1951, vol. 47, pp. 193–97.

    Article  CAS  Google Scholar 

  11. R. Schuman, Jr.:Metallurgical Engineering, p. 376, Addison-Wesley, Reading, Mass., 1952.

    Google Scholar 

  12. J. D. Livingston:J. Appl. Phys., 1960, vol. 31, pp. 1071–76.

    Article  ADS  CAS  Google Scholar 

  13. K. A. Jackson:Phil. Mag., 1962, vol. 7, pp. 1117–27.

    Article  ADS  CAS  Google Scholar 

  14. F. C. Frank: quoted inProg. Metal Phys., vol. 8, pp. 203–53.

  15. W. A. Tiller and J. W. Rutter:Can. J. Phys., 1956, vol. 34, pp. 96–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H. AKITA and D. S. SAMPAR, formerly with Department of Metallurgical Engineering and Materials Sciences University of Notre Dame, Notre Dame, Ind. 46556

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akita, H., Sampar, D.S. & Fiore, N.F. Substructure control by solidification control in cu crystals. Metall Trans 4, 1593–1597 (1973). https://doi.org/10.1007/BF02668013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668013

Keywords

Navigation