Skip to main content
Log in

Prediction of the effects of surface-active elements on gas-liquid metal kinetics

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Equations have been developed for calculating the fraction of free surface, 1-θT, when two or more surface-active elements (S, O,Se,etc.) are present in liquid iron or its alloys. It is shown that equations of the form k =A Vl-θT -B well describe the essentially linear plots which represent the variation of rate constant k with concentration of surface-active elements in more than 30 researches on absorption and desorption of nitrogen in stirred liquid iron and its alloys. To normalize the effect of variation in metallodynamic properties from researcher to researcher, a second relation has been developedwhich describes a dimensionless rate constant for nitrogen k FN (with range0 to 1) given by k FN = CVl-θT-D, where C and D are small constants. The relation k FN = 1.19 Vl-θT-0.19 is a fair representation of the absorption and desorption behaviors in the 1550 ° to 1600 ° range for all the many iron and iron alloy cases examined. Although these two relations are largely empirical they and the simple linear graphs involved provide potentially valuable new methods of rate prediction. There is some evidence that the behavior of hydrogen with liquid Fe, Cu, and Ni is analogous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Belton:Metall. Trans. B, 1976, vol. 7B, pp. 35–42.

    Article  CAS  Google Scholar 

  2. M. T. Utine and N. A. D. Parlee:Trans. TMS-AIME, 1968, vol. 242, pp. 1458–60.

    CAS  Google Scholar 

  3. S. Ban-Ya, T. Shinohara, H. Tozaki, and T. Fuwa:Tetsu-to-Hagane, 1974, vol. 160, p. 21.

    Google Scholar 

  4. P. J. Depuydt and N. A.D. Parlee:Metall. Trans., 1972, vol. 3, pp. 525–32.

    CAS  Google Scholar 

  5. J. Y. Lee and N. A. D. Parlee:High Temp. Sci., 1972, vol. 4, no. 2, pp. 147–59.

    CAS  Google Scholar 

  6. V. G. Levich: “Physicochemical Hydrodynamics”, Prentice Hall, Englewood Cliffs, NJ, 1962, pp. 689–99.

    Google Scholar 

  7. R.D. Pehlke and J.F. Elliott:Trans. TMS-AIME, 1963, vol. 277, pp. 844–55.

    Google Scholar 

  8. W. M. Boorstein and R.D. Pehlke:Trans. TMS-AIME, 1969, vol. 245, p. 1843.

    CAS  Google Scholar 

  9. R.D. Pehlke and J.F. Elliott:Trans. TMS-AIME, 1963, vol. 277, p. 844.

    Google Scholar 

  10. R.G. Mowers and R.D. Pehlke:Metall. Trans., 1970, vol. 1, p. 51.

    CAS  Google Scholar 

  11. M. Inouye and T. Choh:Trans. ISIJ, 1968, vol. 8, p. 134.

    Google Scholar 

  12. S. Ban-ya, T. Sinohara, H. Tozaki, and T. Fuwa:Tetsu-to-Hagane, 1974, vol. 60, p. 21.

    Google Scholar 

  13. T. Choh, T. Moritani, and M. Inouye:Trans. ISIJ, 1979, vol. 19, p. 221.

    CAS  Google Scholar 

  14. K. Narita, S. Oyama, T. Makino, and M. Okamura:Tetsu-to-Hagane, 1971, vol. 57, p. 2207.

    CAS  Google Scholar 

  15. P. Kosakevitch and G. Urbain:Mem. Scientif. de la Revue de Metl., 1963, vol. 60, pp. 143–56.

    Google Scholar 

  16. W. Small, R. Radzilowski, and R.D. Pehlke:Metall. Trans., 1973, vol. 4, p. 2045.

    Article  CAS  Google Scholar 

  17. V.I. Fedorchenko and V. V. Avarin: “Russian Metallurgy”, 1974, vol. 3, p. 26.

    Google Scholar 

  18. M. Inouye and T. Choh:Trans. ISIJ, 1972, vol. 12, p. 189.

    Google Scholar 

  19. M. Inouye, T. Choh, and Yamada:Tetsu-to-Hagane, 1976, vol. 62, p. 334.

    Google Scholar 

  20. K. Suzuki, K. Mori, and Y. Ito:Tetsu-to-Hagane, 1969, vol. 55, p. 877.

    CAS  Google Scholar 

  21. Fuwa,et al:Tetsu-to-Hagane, 1967, vol. 53, p. 5328.

    Google Scholar 

  22. M. Inouye, M. Takada, and T. Choh:Trans. ISIJ, 1977, vol. 17, p. 653.

    Google Scholar 

  23. C.H. Hua: “Prediction of Solubilities, Diffusivities, and Effects of Surface Active Elements on Kinetics of Gases in Liquid Iron Alloys”, Ph.D. Dissertation, Stanford University, Stanford, CA, 1980.

    Google Scholar 

  24. H.J. Grabke, W. Paulitschke, and H. Veifhaus:Surface Science, 1977, vol. 63, p. 377.

    Article  CAS  Google Scholar 

  25. G.M. Grigorenko: Paton Electric Welding Institute (USSR), private communication under the US-USSR cooperative research program on “Electrometallurgy and Materials”, 1976.

  26. R.J. Fruehan and L. J. Martonik:Metall. Trans. B, 1980, vol. 11B, pp. 615–21.

    Article  CAS  Google Scholar 

  27. P.V. Danckwerts:Ind. Engng. Chem., 1951, vol. 43, p. 1460.

    Article  CAS  Google Scholar 

  28. L.J. Austin and H. Sawiwsotwki: Inst. Chem. Engrs., London, Symp. Ser. No. 26, 1967, p. 3.

  29. R. J. Fruehan and L. J. Martonik:Metall. Trans. B, 1981, vol. 12B, pp. 379–84.

    Article  CAS  Google Scholar 

  30. F.D. Richardson:Physical Chemistry of Melts in Metallurgy, Aca-demic Press, London and New York, NY, 1974, vol. 2, pp. 408–16, 426–39.

    Google Scholar 

  31. J. T. Davies and W. Khan:Chem. Engng. Sci., 1962, vol. 20, p. 713.

    Article  Google Scholar 

  32. M. Byrne and G.R. Belton: Ph.D. Thesis Research, University of Pennsylvania (private communication from reviewer), 1981.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, C.H., Parlee, N.A.D. Prediction of the effects of surface-active elements on gas-liquid metal kinetics. Metall Trans B 13, 357–367 (1982). https://doi.org/10.1007/BF02667751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667751

Keywords

Navigation