, Volume 47, Issue 1, pp 1–25 | Cite as

Platform environments, microfacies and systems tracts of the upper Cenomanian-lower Santonian of Sinai, Egypt

  • Jan Bauer
  • Jochen Kuss
  • Thomas Steuber


Factors controlling grain composition and depositional environments of upper Cenomanian—Santonian limestones of Sinai are discussed. The mainly shallow-water, inner-platform setting investigated is subdivided into five major facies belts, each represented by several microfacies types (MFTs). Their lateral distribution patterns and their composition underline aclear relation between depositional environment and platform position. The facies belts include sandstones and quartzose packstones of siliciclastic shorefaces, mudstones and bioclastic wackestones of restricted lagoons, shallow-subtidal packstones with diverse benthic foraminifera and calcareous algae, bioclastic and/or oolitic grainstones of inner-platform shoals, and wackestones of deep open-marine environments.

The microfacies distribution patterns of the Cenomanian-Santonian strata are evaluated with respect to local and regional large-scale environmental changes. While protected shallow-subtidal environments with only subordinate ooids and oncoids prevail during the late Cenomanian, high-energy oolithic shoals and carbonate sands occur locally during the middle and late Turonian. They were probably related to a change of the platform morphology and a reorganisation of the platform after a late Cenomanian drowning. In the Coniacian-Santonian, the lack of ooids, oncoids, and the decrease of calcareous algae versus an increase in siliciclastics indicate a shift to lower water temperature and to a more humid climate. Especially in the Turonian, the interplay between sea-level changes, accommodation, hydrodynamics, and siliciclastic input is reflected by lithofacies and biofacies interrelation-ships that are elaborated within individual systems tracts. In particular, increasing accommodation intensified circulation and wave-agitation and controlled the distribution of high-energy environments of the middle and upper Turonian trans-gressive systems tracts. During highstands protected innerplatform environments prevailed.


Microfacies analysis Inner-carbonate platform Sinai (Egypt) Upper cenomanian-lower turonian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Kireem, M.R., Schrank, E., Samir, A.M. and Ibrahim, M.I.A. (1996): Cretaceous palaeoecology, palaeogeography and palaeoclimatology of the northern Western Desert, Egypt.— J. Afric. Earth Sci.,22, 93–112, Amsterdam.CrossRefGoogle Scholar
  2. Abed, A.M. and Amireh, B.S. (1999): Sedimentology, geochemistry, economic potential and palaeogeography of an Upper Cretaceous phosphorite belt in southeastern desert of Jordan.—Cretaceeus Res.20, 119–133, London.CrossRefGoogle Scholar
  3. Ahmed, S.M. (1995): Facies characteristics of the Upper Cretaceous exposures, Taba area, Sinai, Egypt.—Egypt. J. Geol.,39, 159–178, Cairo.Google Scholar
  4. Almogi-Labin, A., Bein, A. and Sass, E. (1993): Late Cretaceous upwelling systems along the southern Tethys margin (Israel): interrelationship between productivity, bottom water environments, and organic matter preservation.—Paleoceanography,8, 671–690, Washington, DC.CrossRefGoogle Scholar
  5. Arthur, M.A., Schlanger, S.O. and Jenkyns, H.C. (1987): The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeocenographic controls on organic-matter production and preservation— In: Brooks, J. and Fleets, A.J. (eds.): Marine petroleum source rocks.—Geol. Soc. London Spec. Publ.,26, 401–420, Oxford (Blackwell).Google Scholar
  6. Bachmann, M. and Kuss, J. (1998): The Middle Cretaceous carbonate ramp of the northern Sinai: sequence stratigraphy and facies distribution.—In: Wright, V.P. and Burchette, T.P. (eds.): Carbonate Ramps.—Geol. Soc. London Spec. Publ.,149, 253–280, Oxford (Blackwell).Google Scholar
  7. Barattolo, F. (1991): Mesozoic and Cenozoic marine benthic calcareous algae with particular regard to Mesozoic dasycladaceans.—In: Riding, R. (ed.): Calcareous algae and stromatolites.—504–540, Berlin, (Springer).Google Scholar
  8. Bartov, Y. and Steinitz, G. (1977): The Judea and Mount Scopus groups in the Negev and Sinai with trend surface analysis of the thickness data.—Israel J. Earth-Sci.,26, 119–148, Jerusalem.Google Scholar
  9. Bartov, Y., Lewy, Z., Steinitz, G. and Zak, I. (1980): Mesozoic and Tertiary stratigraphy, paleogeography and structural history of the Gebel Areif en Naqa area, eastern Sinai.—Israel J. Earth-Sci.,29, 114–139, Jerusalem.Google Scholar
  10. Bassoullet, J.P., Bernier, P., Deloffre, R., Gènot, P., Poncet, J. and Roux, A. (1983): Udoteacea.—Bull. Centres Rech. Explor.— Prod. Elf Aquitaine,7, 449–621, Pau.Google Scholar
  11. Bauer, J., Marzouk, A.M., Steuber, T. and Kuss, J. (2001): Lithostratigraphy and biostratigraphy of the Cenomanian— Santonian strata of Sinai, Egypt.—Cretaceous Res.,22, 497–526, London.CrossRefGoogle Scholar
  12. Bauer, J. (2002): Late Cenomanian-Santonian carbonate platform evolution of Sinai (Egypt): stratigraphy, facies, and sequence architecture.—Berichte, Fachbereich Geowissenschaften, Universität Bremen,191, 178 p., Breman.Google Scholar
  13. Bosence, D.W.J. (1983): Description and classification of rhodoliths (rhodoids, rhodolites).—In: Peryt, T. (ed.): Coated grains.—217–224, Berlin (Springer).Google Scholar
  14. Bosworth, W., Guiraud, R. and Kessler, L.G. (1999): Late Cretaceous (ca. 84 Ma) compressive deformation of the stable platform of northeast Africa (Egypt): far-field stress effects of the “Santonian event” and origin of the Syrian arc deformation belt.—Geology,27, 633–636, Boulder.CrossRefGoogle Scholar
  15. Brett, C.E. (1998): Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations.— Palaios,13, 241–262, Tulsa.CrossRefGoogle Scholar
  16. Buchbinder, B., Benjamini, C. and Lipson-Benitah, S. (2000): Sequence development of Late Cenomanian—Turonian carbonate ramps platforms and basins in Israel.—Cretaceous Res.,21, 813–843, London.CrossRefGoogle Scholar
  17. Burchette, T.P. and Wright, V.P. (1992): Carbonate ramp depositional systems.—Sediment. Geol.,79, 3–57, Amsterdam.CrossRefGoogle Scholar
  18. Carannante, G., Ruberti, D. and Sirna, M. (2000): Upper Cretaceous ramp limestones from Sorrento Peninsula (southern Apennines, Italy): micro- and macrofossil associations and their significance in depositional sequences.—Sedim. Geol.,132, 89–123, Amsterdam.CrossRefGoogle Scholar
  19. Carannante, G., Graziano, R., Rubertti D. and Simone, L. (1997): Upper Cretaceous temperatute-type open shelves from northern (Sardinia) and southern (Apennines-Apulia) Mesozoic Tethyan margins—In: James, N.P. and Clarke, J.A.D. (eds.): Cool-water carbonates.—(SEPM) Soc. Econ. Paleontol. Mineral. Spec. Publ.,56; 309–325, Tulsa.Google Scholar
  20. Carannante, G., Cherchi, A. and Simone, L. (1995): Chlorozoan versus foramol lithofacies in Upper Cretaceous rudist limestones.—In: Philip, J. and Skelton, P.W. (eds.): Palaeo-environmental models for the benthic associations of Cretaceous carbonate platforms in the Tethyan realm.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,119, 137–154, Amsterdam.Google Scholar
  21. Chérif, O.H., Al-Rifaiy, I.A., Al-Afifi, F.I. and Orabi, O.H. (1989): Foraminiferal biostratigraphy and paleoecology of some Cenomanian-Turonian exposures in west-central Sinai, (Egypt).—Rev. Micropaléont.,31, 243–262, ParisGoogle Scholar
  22. D'Argenio, B., Ferreri, V., Raspini, A., Amodio, S. and Buonocunto, F.P. (1999): Cyclostratigraphy of a carbonate platform as a tool for high-precision correlation.—Tectonophysics,315, 357–384, Amsterdam.CrossRefGoogle Scholar
  23. Di Stefano, P. and Ruberti, D. (2000): Cenomanian rudist-dominated shelf-margin limestones from the Panormide carbonate platform (Sicily, Italy): facies analysis and sequence stratigraphy.— Facies,42, 133–160.CrossRefGoogle Scholar
  24. Dunham, R.J. (1962): Classification of carbonate rocks according to depositional texture.—In: Ham, W.E. (ed.): Classification of carbonate rocks.—Amer. Assoc. Petrol. Geol. Mem.,1, 108–121, Tulsa.Google Scholar
  25. El-Azabi, M.H. and El-Araby, A. (1996): Depositional facies and palaeoenvironments of the Albian-Cenomanian sediments in Gabal El-Minshera, north central Sinai, Egypt.—Geol. Soc. Egypt Spec. Publ.,2, 151–198, Cairo.Google Scholar
  26. El-Naggar, Z.R. and Al-Rifaiy, I.A. (1973): Stratigraphy and microfacies of type Magwa Formation of Kuwai, Arabia: Part 2: Mishrif Limestone Member. Amer. Assoc. Petrol. Geol. Bull.,57, 2263–2279, Tulsa.Google Scholar
  27. Elliot, G.F. (1991): Dasycladalean algae of the Palaeozoic and Mesozoic.—In: Riding, R. (ed.): Calcareous algae and stromatolites.—125–130, Berlin (Springer).Google Scholar
  28. Embry, A.F. and Kloven, S.E. (1972): Absolute water depth limits of late Devonian paleoecological zones.—Geologische Rundschau,61, 672–686, StuttgartCrossRefGoogle Scholar
  29. Eshet, Y., Almogi-Labin, A. and Bein, A. (1994): Dinoflagellate cysts, paleoproductivity and upwelling systems: A Late Cretaceous example from Israel.—Marine Micropaleont.,23, 231–240, Amsterdam.CrossRefGoogle Scholar
  30. Eweda, S. and El-Sorogy, A.S. (1999): Stratigraphy and facies development of the Upper Cretaceous.—Lower Tertiary succession in Wadi Feiran area, southwestern Sinai, Egypt..—N. Jb. Geol. Paläontol. Abh.,211, 263–289, Stuttgart.Google Scholar
  31. Flügel, E. (1982): Microfacies analysis of limestones.—633 p., Berlin (Springer).Google Scholar
  32. Frakes, L.A., Francis, J.E. and Syktus, J.I. (1992): Climate modes of the Phanerozoic: the history of the earth's climate over the past 600 million years.—274 p. Cambridge (Cambridge University Press).Google Scholar
  33. Glenn, C.R. (1990): Depositional sequences of the Duwi, Sibâiya and phosphate formations, Egypt: phosphogenesis and glauconitization in a Late Cretaceous epeiric sea.—In: Notholt, A.J.G. and Jarvis, I. (eds.). Phosphorite research and development.— Geol. Soc. London Spec. Publ.,52, 205–222, Oxford (Blackwell).Google Scholar
  34. Guiraud, R. and Bosworth, W. (1997): Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics.—Tectonophysics,282, 39–82, Amsterdam.CrossRefGoogle Scholar
  35. Hamaoui, M. and Saint-Marc P. (1970): Microfaunes et microfaciès du Cénomanien du proche-orient.—Bull. Centre Rech. Pau-SNPA,4, 257–352, Pau.Google Scholar
  36. Handford, C.R. and Loucks, R.G. (1993): Carbonate depositional sequences and systems tracts—responses of carbonate platforms to relative sea-level changes.—In: Loucks, R.G. and Sarg, J.F. (eds.): Carbonate sequence stratigraphy-recent events and applications.—Amer. Assoc. Petrol. Geol. Mem.,57, 3–41, Tulsa.Google Scholar
  37. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.-C. and Vail, P.R. (1998): Chart 5, Mesozoic and Cenozoic sequence chronostratigraphic framework of European basin.— In: De Graciansky, P.-C., Hardenbol, J., Jacquin, T. and Vail, P.R. (eds.): Mesozoic and Cenozoic sequence stratigraphy of European basins.—(SEPM) Soc. Econ. Paleontol. Mineral. Spec. Publ.,60, Tulsa.Google Scholar
  38. Harris, P.M., Frost, S.H., Seiglie, G.A. and Schneidermann, N. (1984): Regional unconformities and depositional cycles, Cretaceous of the Arabian Peninsula.—In: Schlee, J.S. (ed.): Interregional unconformities and hydrocarbon accumulation.— Amer. Assoc. Petrol. Geol. Mem.,36, 67–80, Tulsa.Google Scholar
  39. Hart, M.B. (1999): The evolution and biodiversity of Cretaceous planktonic foraminiferida.—Geobios,32, 247–255, Lyon.CrossRefGoogle Scholar
  40. Heimhofer, U. (1999). Mikrofazies, Zyklostratigraphie und Diagenese zweier Profile der oberturonen Wata-Formation (E'Sinaihalbinsel/Ägypten).— Unpublished Diploma thesis, Institute for Geology and Mineralogy, Erlangen-Nürnberg University.Google Scholar
  41. Hunt, D. and Tucker, M.E. (1993): Sequence stratigraphy of carbonate shelves with an example from the mid-Cretaceous (Urgonian) of southeast France.—In: Posamentier, H.W., Summerhayes, C.P., Haq, B.U. and Allen, G.P. (eds.): Sequence stratigraphy and facies associations.—Int. Assoc. Sedimentol. (IAS) Spec. Publ.,18, 307–341, Oxford (Blackwell).Google Scholar
  42. Ibrahim, M.I.A. and Abdel-Kireem, M.R. (1997): Late Cretaceous palynofloras and foraminifera from Ain El-Wadi area, Farafra Oasis, Egypt.—Cretaceous Res.,18, 633–660, London.CrossRefGoogle Scholar
  43. James, N.P. and Kendall, A.C. (1992): Introduction to carbonate and evaporite facies models.—In: Walker, R.G. (ed.): Facies models: response to seal-level changes.—265–275, Geological Association of Canada.Google Scholar
  44. Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D. and Rosenfeld, A. (1988): Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event.—Cretaceous Res.,9, 3–103, London.CrossRefGoogle Scholar
  45. Kassab, A.S. (1996): Cenomanian-Turonian boundary in the Gulf of suez region: towards an inter-regional correlation, based on ammonites.—Geol. Soc. Egypt. Spec. Publ.,2, 61–98, Cairo.Google Scholar
  46. Kassab, A.S. and Obaidalla, N.A. (2001): Integrated biostratigraphy and inter-regional correlation of the Cenomanian-Turonian deposits of Wadi Feiran, Sinai, Egypt.—Cretaceous Res.,22, 105–114, London.CrossRefGoogle Scholar
  47. Kerr, A.C. (1998): Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary?.—J. Geol. Soc. London,155, 619–626.Google Scholar
  48. Kolodny, Y. and Raab, M. (1988): Oxygen isotopes in phosphatic fish remains from Israel: paleothermometry of tropical Cretaceous and Tertiary shelf waters.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,64, 59–67, Amsterdam.CrossRefGoogle Scholar
  49. Kuss, J. (1992): The Apitan—Paleocene shelf carbonates of northeast Egypt and southern Jordan: establishment and breakup of carbonate platforms along the southern Tethyan shores.— Z. Deutsch. Geol. Ges.,143, 107–132, Hannover.Google Scholar
  50. Kuss, J. and Bachmann, M. (1996): Cretaceous paleogeography of the Sinai peninsula and neighbouring areas.—Comptes Rendus de l'Académie des Sciences, Serie IIa,322, 915–933, Paris.Google Scholar
  51. Kuss, J. and Conrad, M.-A. (1991): Calcareous algae from Cretaceous carbonates of Egypt, Sinai, and southern Jordan.—J. Paleont.,65, 869–882, Lawrence, Kansas.Google Scholar
  52. Kuss, J. and Malchus, N. (1989): Facies and composite biostratigraphy of Late Cretaceous strata from Northeast Egypt..— In: Wiedmann, J. (ed.): Cretaceous of the Western Tethys. Proceedings 3rd International Cretaceous Symposium, Tübingen 1987.—879–910, Stuttgart (Schweizerbart).Google Scholar
  53. Kuss, J., Scheibner, C. and Gietl, R. (2000a). Carbonate platform to basin transition along an Upper Cretaceous to Lower Tertiary Syrian Arc uplift, Galala Plateaus, Eastern Desert, Egypt.— GeoArabia,5, 405–424, Abhrain.Google Scholar
  54. Kuss, J., Westerhold, T., Gross, U., Bauer, J. and Lüning, S. (2000b): Mapping of Late Cretaceous Stratigraphic Sequences along a Syrian Arc Uplift-examples from the Areif el Naqa/Eastern Sinai.—M.E.R.C. Ain Shams Univ., Earth Sci. Ser.,14, 171–191, Cairo.Google Scholar
  55. Kuypers, M.M.M., Pancost, R.D. and Damsté, J.S.S. (1999): A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times.—Nature,399 (May), 342–345, London.CrossRefGoogle Scholar
  56. Lewy, Z. (1975): The geological history of southern Israel and Sinai during the Coniacian.—Israel J. Earth-Sci,24, 19–43, Jerusalem.Google Scholar
  57. Lewy, Z. (1989): Correlation of lithostratigraphic units in the upper Judea Group (Late Cenomanian—Late Coniacian) in Israel.— Israel J. Earth-Sci,38, 37–43, Jerusalem.Google Scholar
  58. Lüning, S., Kuss, J., Bachmann, M., Marzouk, A.M. and Morsi, A.M. (1998a). Sedimentary response to basin inversion: Mid Cretaceous—Early Tertiary pre- to syndeformational deposition at the Areif El Naqa anticline (Sinai, Egypt).—Facies,38, 103–136, Erlangern.CrossRefGoogle Scholar
  59. Lüning, S., Marzouk, A.M., Morsi, M. and Kuss, J. (1998b): Sequence stratigraphy of the Upper Cretaceous of central-east Sinai, Egypt.—Cretaceous Res.,19, 153–196, London.CrossRefGoogle Scholar
  60. Morsi, A.M. and Bauer, J. (2002): Cenomanian ostracode faunas from Sinai peninsula, Egypt.—Revue Paléobiologie,20/2, 377–414, Genève.Google Scholar
  61. Moustafa, A.R. and Khalil, M.H. (1990): Structural characteristics and tectonic evolution of north Sinai fold belts.—In: Said, R. (ed.): The geology of Egypt.—381–389. Rotterdam (Balkema).Google Scholar
  62. Mu, X. (1991): Fossil Udoteacea and Gymnocodiaceae.—In: Riding, R. (ed.): Calcareous algae and stromatolites.—146–166, Berlin (Springer).Google Scholar
  63. Mücke, A. (2000): Environmental conditions in the Late Cretaceous African Tethys: conclusions from a microscopic-micro-chemical study of ooidal ironstones from Egypt, Sudan and Nigeria.—J. Afric. Earth Sci.,30, 25–46, Amsterdam.CrossRefGoogle Scholar
  64. Orabi, O.H. and Ramadan, F.S. (1995): Contribution to the stratigraphy and microfacies of the Matulla Formation in southern Wadi Feiran and Wadi Abuira, west-central Sinai, Egypt.—Egypt. J. Geol.,39, 339–360, Cairo.Google Scholar
  65. Perry, C.T. (1998): Grain susceptibility to the effects of microboring; implications for the preservation of skeletal carbonates.— Sedimentology,45, 39–51, Oxford.CrossRefGoogle Scholar
  66. Perry, C.T. (1999): Biofilm-related calcification, sediment trapping and constructive micrite envelopes: a criterion for the recognition of ancient grass-bed environments?.—Sedimentology,46, 33–45, Oxford.CrossRefGoogle Scholar
  67. Philip, J. and Airaud-Crumiere, C. (1991): The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: a global control.—Coral Reefs,10, 115–125, Berlin.CrossRefGoogle Scholar
  68. Philip, J. and Floquet, M. (2000): Late Cenomanian (94.7–93.5 Ma). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (eds.): Peri-Tethys atlas palaeogeographical maps, explanatory notes—129–136, Paris (CCGM/CGMW).Google Scholar
  69. Philip, J. et al. (12 co-authors) (2000): Late Cenomanian.—In: J. Dercourt, Gaetani M., Vrielynck B., Barrier E., Biju-Duval B., Brunet M.F., Cadet J.P., Crasquin S. and M. Sandulescu (eds.): Atlas Peri-Tethys palaeogeographical maps.—Map 14, Paris (CCGM/CGMW).Google Scholar
  70. Pittet, B. and Strasser, A. (1998): Depositional sequences in deepshelf environments formed through carbonate-mud import from the shallow platform (Late Oxfordian, German Swabian Alb and eastern Swiss Jura).—Eclogae Geol. Helv.91, 149–169, Basel.Google Scholar
  71. Pittet, B., Strasser, A. and Dupraz, C. (1995): Palaeoecology, palaeoclimatology and cyclostratigraphy of shallow-water carbonate-siliciclastic transitions in the Oxfordian of the Swiss Jura.—16th IAS Regional Meeting of Sedimentology. Field Trip Book, 254p., Paris. Riding, R. (2000): Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms.—Sedimentology,47, 179–214, Oxford.Google Scholar
  72. Rohrlich, V., Metzer, A. and Zohar, E. (1980): Potential iron ores in the Lower Cretaceous of Israel and their origin.—Israel J. Earth Sci.,29, 73–80, Jerusalem.Google Scholar
  73. Rosenfeld, A. and Raab, M. (1974): Potential iron ores in the Lower Cretaceous of Israel and their origin.—Israel J. Earth Sci.,29, 73–80, Jerusalem.Google Scholar
  74. Rosenfeld, A. and Raab, M. (1974): Cenomanian-Turonian ostracodes from the Judea Group in Israel.—Geol. Surv. Israel Bull.,62, 1–64, Jerusalem.Google Scholar
  75. Saint-Marc, P. (1974): Etude stratigraphique et micropaléontologique de l'Albien, du Cénomanien et du Turonien du Liban.—Notes et Mémoires sur le Moyen-Orient,13, 1–298, Paris (Muséum National d'Histoire Narturelle).Google Scholar
  76. Salaj, J. and Maamouri, A.-L. (1998): Upper Cretaceous microbiofacies of Tunisia, III part.—In: Salaj, J. and Maamouri, A.-L. (eds.): Atlas of Tunisian microbiofacies and its relation to some circum-tethydian types.—Zemny Plyn A Nafta,43, 339–433, (MND, Hodonin, Czech Republic).Google Scholar
  77. Sanders, D. (1999). Shell disintergration and taphonomic loss in rudist biostromes.—Lethaia,32, 101–112, Oslo.CrossRefGoogle Scholar
  78. Sandler, A. (1996): A Turonian subaerial event in Israel: karst, sandstone and pedogenesis.—Geol. Surv. Israel Bull.,85, 52 p., Jerusalem.Google Scholar
  79. Schlager, W., Reijmer, J.J.G. and Doxler, A. (1994): Highstand shedding of carbonate platforms.—J. Sediment. Res.,B64, 270–281, Tulsa.Google Scholar
  80. Schröder, R. and Neumann, M. (1985, eds.): Les grandes foraminiféres du Crétacé moyen de la region Méditerranèenne.— Geobios Mém. Spéc.,7, 1–160, Lyon.Google Scholar
  81. Senowbari-Daryan, B. and Kuss, J. (1992): Anomuren-Koprolithen aus der Kreide von Ägypten.—Mitt. Geol.—Paläont. Inst. Univ. Hamburg,73, 129–157, Hamburg.Google Scholar
  82. Shahar, J. (1994): The Syrian Arc system: an overview.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,112, 125–142, Amsterdam.CrossRefGoogle Scholar
  83. Shahin, A. (1991): Cenomanian-Turonian ostracods from Gebel Nezzazat, southwestern Sinai, Egypt, with observations on d13 C values and the Cenomanian/Turonian boundary.—J. Micropalaeontol.,10, 133–150, London.Google Scholar
  84. Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D. and Simmons, M.D. (2001): Arabian Plate sequence stratigraphy.—GeoArabia Spec. Publ.2, 371 p., Bahrain.Google Scholar
  85. Spence, G.H. and Tucker, M.E. (1999): Modeling carbonate microfacies in the context of high-frequency dynamic relative sea-level and environmental changes.—J. Sedim. Res.,69, 947–961, Tulsa.Google Scholar
  86. Steuber, T. and Löser, H. (2000): Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (Mollusca: Hippuritacea) in the central-eastern Mediterranean and Middle East, analysed from a palaeontological database.—Palaeogeogr., Palaeoclimatol, Palaeoecol.,162, 75–104, Amsterdam.CrossRefGoogle Scholar
  87. Strasser, A., Pittet, B., Hillgärtner, H. and Pasquier, J.-B. (1999): Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis.— Sedim. Geol.,128, 201–221, Amsterdam.CrossRefGoogle Scholar
  88. Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. and Perz-Cruz, C. (1991): The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview.—In: Einsele, G., Ricken, W. and Seilacher, A. (eds.): Cycles and events in stratigraphy.—617–659, Berlin (Springer).Google Scholar
  89. Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. and Hardenbol, J. (1988): An overview of the fundamentals of sequence stratigraphy and key definitions.— In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C. Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C. (eds.): Sea-level changes: an integrated approach.-(SEPM) Soc. Econ. Paleontol. Mineral. Spec. Publ.,42, 39–45, Tulsa.Google Scholar
  90. Walley, C.D. (1998): Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region.—Tectonophysics,298, 37–62, Amsterdam.CrossRefGoogle Scholar
  91. Wiese, F. (1999): Stable isotope data (δ13C, δ18O) from middle—upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with acomparison to northern Germany (Söhlde and Salzgitter-Salder).—Newsletter Stratigraphy,37, 37–62, Stuttgart.Google Scholar
  92. Wilson, J.L. (1975): Carbonate facies in geologic history.—471 p., Berlin (Springer).Google Scholar
  93. Wright, P. and Burchette, T.P. (1996): Shallow-water carbonate environments.—In: Reading, H.G. (ed.): Sedimentary environments: processes, facies and stratigraphy.—325–394, Oxford (Blackwell).Google Scholar
  94. Zalat, A.A. (1999): Dolomitization of Cenomanian-Turonian limestones in central Sinai, Egypt.—Ain Shams University, Earth Sci. Ser.,13, 173–186, Cairo.Google Scholar

Copyright information

© Institut füur Palaentologie, Universitat Erlangen 2002

Authors and Affiliations

  • Jan Bauer
    • 1
  • Jochen Kuss
    • 1
  • Thomas Steuber
    • 2
  1. 1.Fachbereich GeowissenschaftenUniversität BremenBremen
  2. 2.Institut für Geologie, Mineralogie und GeophysikRuhr-UniversitätBochum

Personalised recommendations