Skip to main content
Log in

Phenomenology and theory in structural prediction

  • Published:
Journal of Phase Equilibria

Abstract

Phenomenology and theory play different but complementary roles in the prediction of the structure and phase stability of materials. This general theme is illustrated with examples of the use of phenomenological structure maps and quantum mechanical theory in the alloy development of intermetallics, such as the titanium and nickel aluminides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hume-Rothery, “Researches on the Structure of Alloys,” British Non-Ferrous Metals Research Association, Research Report No. 562(1941).

  2. G.V. Raynor,An Introduction to the Electron Theory of Metals, The Institute of Metals, London (1947).

    Google Scholar 

  3. W. Hume-Rothery,Atomic Theory for Students of Metallurgy, The Institute of Metals, London (1946).

    MATH  Google Scholar 

  4. H. Jones,Proc. Phys. Soc., 49, 250 (1937).

    Article  ADS  Google Scholar 

  5. P. Hohenberg and W. Kohn,Phys. Rev. B, 136, 864 (1964).

    Article  ADS  Google Scholar 

  6. W. Kohn and L.J. Sham,Phys. Rev. A, 140, 1133 (1965).

    Article  ADS  Google Scholar 

  7. R.O. Jones and O. Gunnarson,Reviews of Modern Physics, 61, 689 (1989).

    Article  ADS  Google Scholar 

  8. Computational Science for Material and Process Innovation, Nippon Steel Corporation, Japan (1993).

  9. D.G. Pettifor, “The Use of Supercomputers in Materials Research,” Report for UK SERC's Materials Commission, February 1994.

  10. I. Stich, M.C. Payne, R.D. King-Smith, J.S. Lin, and L.J. Clarke,Phys. Rev. Lett., 68, 1351 (1992).

    Article  ADS  Google Scholar 

  11. A. Zeyher,Computers in Physics, 7, 382 (1993).

    Article  ADS  Google Scholar 

  12. K. Binder,Int. J. Modern Phys., C3, 565 (1992).

    Article  ADS  Google Scholar 

  13. M.F. Ashby,Mater. Sci. Technol., 8, 102 (1992).

    Article  Google Scholar 

  14. C.T. Liu, “Design of Ordered Intermetallic Alloys for High-Temperature Structural Use,”High-Temperature Alloys: Theory and Design, AIME, New York, 289 (1984).

    Google Scholar 

  15. D.G. Pettifor, “Structure Mapping,”Intermetallic Compounds: Principles and Practice, J.H. Westbrook and R.L. Fleischer, Ed, John Wiley and Sons Ltd., Chichester, Vol. 1, Ch. 18 (1994).

    Google Scholar 

  16. E. Mooser and W.B. Pearson,Acta Crystalbgr., 12, 1015 (1959).

    Article  Google Scholar 

  17. J.C. Phillips and J.A. Van Vechten,Phys. Rev. Lett., 22, 705 (1969).

    Article  ADS  Google Scholar 

  18. A. Zunger,Phys. Rev.B, 22, 5839 (1980).

    Article  ADS  Google Scholar 

  19. J. St. John and A.N. Bloch,Phys. Rev. Lett., 33, 1095 (1974).

    Article  ADS  Google Scholar 

  20. A. Zunger, “Predicting Phase Stability of Alloys and Compounds from Quantum Mechanics,” Session IV of Hume-Rothery Symposium, presented at TMS Annual Meeting, February 1995, Las Vegas. NV.

  21. P. Villars,J. Less-Common Met, 92, 215 (1983).

    Article  Google Scholar 

  22. P. Villars and F. Hulliger,J. Less-Common Met., 132, 289 (1987).

    Article  Google Scholar 

  23. K.M. Rabe, J.C. Phillips, P. Villars, and I.D. Brown,Phys. Rev. B, 45, 7650 (1992).

    Article  ADS  Google Scholar 

  24. K.M. Rabe, “Diagrammatic Approaches to the Prediction of New Materials,” Session I, Hume-Rothery Symposium, presented at TMS Annual Meeting, February 1995, Las Vegas. NV.

  25. D.G. Pettifor,Solid State Commun., 57, 31 (1984).

    Article  ADS  Google Scholar 

  26. D.G. Pettifor and R. Podloucky,J. Phys. C, Solid State Phys., 19, 315 (1986).

    Article  ADS  Google Scholar 

  27. J.C. Cressoni and D.G. Pettifor,J. Phys., Condens. Matter, 3, 495 (1991).

    Article  ADS  Google Scholar 

  28. D.G. Pettifor,J. Phys. C, Solid State Phys., 19, 285 (1986).

    Article  ADS  Google Scholar 

  29. D.G. Pettifor,Mater. Sci. Technol, 4, 2480 (1988).

    Article  Google Scholar 

  30. D.G. Pettifor,Physica B, 149, 3 (1988).

    Article  Google Scholar 

  31. P. Villars and L.D. Calvert,Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metals Park, OH (1985).

    Google Scholar 

  32. P. Villars, K. Mathis, and F. Hulliger, “Environment Classification and Structural Stability Maps,”The Structures of Binary Compounds, F. de Boer and D.G. Pettifor, Ed., North Holland, Amsterdam, Ch. 1 (1989).

    Google Scholar 

  33. W.B. Jensen, “Crystal Coordination Formulas: A Flexible Notation for Interpretation of Solid-State Structures,”The Structures of Binary Compounds, F. de Boer and D.G. Pettifor, Ed., North Holland, Amsterdam, Ch. 2 (1989).

    Google Scholar 

  34. D.G. Pettifor,Mater. Sci. Technol., 8, 345 (1992).

    Article  Google Scholar 

  35. E.P. George and C.T. Liu, “The Use of Pettifor Structure Maps in Alloy Design,” Session III, Hume-Rothery Symposium (1995).

  36. J.H. Schneibel and W.D. Porter,Mater. Res. Soc. Symp. Proc, 133, 335 (1989).

    Article  Google Scholar 

  37. C.T. Liu, J.A. Horton, and D.G. Pettifor,Mater. Res. Soc. Symp. Proc, 133, 37 (1989).

    Article  Google Scholar 

  38. P.R. Subramanian, J.P. Simmons, M.G. Mendiratta, and D.M. Dimiduk,Mater. Res. Soc. Symp. Proc, 133, 51 (1989).

    Article  Google Scholar 

  39. D.G. Pettifor and M. Aoki,Philos. Trans. R. Soc. (London) A, 334, 439 (1991).

    Article  ADS  Google Scholar 

  40. A.E. Carlsson and P.J. Meschter,J. Mater. Res., 4, 1060 (1989).

    Article  ADS  Google Scholar 

  41. M. Asta, D. de Fontaine, and M. van Schilfgaarde,J. Mater Res., 8, 2554 (1993).

    Article  ADS  Google Scholar 

  42. M.S. Daw and M.I. Baskes,Phys. Rev. B, 29, 6443 (1984).

    Article  ADS  Google Scholar 

  43. M.W. Finnis and J.E. Sinclair,Philos. Mag. A, 50, 45 (1984).

    Article  ADS  Google Scholar 

  44. J.P. Simmons, S.I. Rao, and D.M. Dimiduk,Mater Res. Soc. Symp. Proc, 288, 355 (1992).

    Article  Google Scholar 

  45. S.I. Rao, C. Woodward, and T.A. Parthasarathy,Mater. Res. Soc. Symp. Proc, 213, 125 (1991).

    Article  Google Scholar 

  46. J.R. Smith and D.J. Srolovitz,Modelling Simul. Mater Sci. Eng., 1, 101 (1992).

    Article  ADS  Google Scholar 

  47. C.L. Fu,J. Mater. Res., 5, 971 (1990).

    Article  ADS  Google Scholar 

  48. M. Alouani, R.C. Albers, and M. Methfessel,Phys. Rev. B, 43, 6500 (1991).

    Article  ADS  Google Scholar 

  49. R.W.G. Wyckoff,Crystal Structures, John Wiley & Sons, Inc., New York (1963).

    MATH  Google Scholar 

  50. D. Nguyen Mann, A.M. Bratkovsky, and D.G. Pettifor,Philos. Trans. A 351, 529 (1995).

    Article  ADS  Google Scholar 

  51. Z.W. Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L.G. Ferreira,Phys. Rev. B, 44, 512 (1991).

    Article  ADS  Google Scholar 

  52. D.G. Pettifor and R. Podloucky,Phys. Rev. Lett., 53, 1080 (1984).

    Article  ADS  Google Scholar 

  53. D. Nguyen Manh, G.T. de Lassardière, J.P. Julien, D. Mayon, and F. Cyrot-Lackmann,Solid State Commun., 82, 329 (1992).

    Article  ADS  Google Scholar 

  54. F.S. Pierce, S.J. Poon, and B.D. Biggs,Phys. Rev. Lett., 70, 3919 (1993).

    Article  ADS  Google Scholar 

  55. A.P. Sutton, M.W. Finnis, D.G. Pettifor, and Y. Ohta,J. Phys. C, Solid State Phys., 21, 35 (1988).

    Article  ADS  Google Scholar 

  56. D.G. Pettifor,Phys. Rev. Lett., 63, 2480 (1989).

    Article  ADS  Google Scholar 

  57. M. Aoki, P. Gumbsch, and D.G. Pettifor, “Angular-Dependent Many-Atom Bond-Order Potentials,”Interatomic Potentials and Structural Stability, K. Terakura and H. Akai, Ed., Springer-Verlag, Berlin, 23 (19900.

    Google Scholar 

  58. M. Aoki,Phys. Rev. Lett., 71, 3842 (1993).

    Article  ADS  Google Scholar 

  59. A.P. Sutton,Electronic Structure of Materials, Oxford University Press, Oxford, Ch. 3 (1993).

    Google Scholar 

  60. J.A. Moriarty and R.B. Phillips,Phys. Rev. Lett., 66, 3036 (1991).

    Article  ADS  Google Scholar 

  61. A.E. Carlsson,Phys. Rev. B, 44, 6590 (1991).

    Article  ADS  Google Scholar 

  62. S.M. Foiles,Phys. Rev. B, 48, 4287 (1993).

    Article  ADS  Google Scholar 

  63. D.G. Pettifor and M. Aoki, “Angularly-Dependent Many-Body Potentials within Tight Binding Hiickel Theory,”Structural and Phase Stability of Alloys, J.L. Morán-López, F. Mejiá-Lira, and J.M. Sanchez, Ed., Plenum Publishing Corp., New York, 119 (1992).

    Chapter  Google Scholar 

  64. D.G. Pettifor, M. Aoki, P. Gumbsch, A.P. Horsfield, D. Nguyen Manh, and V. Vitek,Mater. Sci. Eng. A, 192/3, 24 (1995).

    Article  Google Scholar 

  65. M. Aoki, “Tight Binding Bond Order Potentials and Forces for Atomistic Simulations,” Session III, Hume-Rothery Symposium (1995).

  66. A.P. Horsfield, D.G. Pettifor, C. Goringe, and M. Aoki, “Bond Order Potentials for Covalent Systems,” Session III, Hume-Rothery Symposium, presented at TMS Annual Meeting, February 1995, Las Vegas. NV.

  67. S.R. Nishitani, “Structural Stability of Aluminium using Bond Order Potentials,” Session III, Hume-Rothery Symposium, presented at TMS Annual Meeting, February 1995, Las Vegas. NV.

  68. A.P. Horsfield, A.M. Bratkovsky, M. Fearn, D.G. Pettifor, and M. Aoki,Phys. Rev. B 53, 12694 (1966).

    Article  ADS  Google Scholar 

  69. D.G. Pettifor,Bonding and Structure of Molecules and Solids, Oxford University Press (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettifor, D.G. Phenomenology and theory in structural prediction. JPE 17, 384–395 (1996). https://doi.org/10.1007/BF02667628

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667628

Keywords

Navigation